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Resumé

Homogenization techniques were developed to simplify description and modeling of hetero-
geneous structures where the characteristic size of the heterogeneities is much smaller than
the size of the whole structure. Usually the simplification is associated with tractabil-
ity of numerical modeling: “original structures”, like fiber composites, or masonry are
constructed by repeating some heterogeneity patterns which are related to oscillation of
material coefficients. Therefore, the “direct modeling approach”, where all the oscillations
must be captured, may lead to extremely large “discretized” models with untractable num-
bers of equations to be solved. The homogenization-based analysis and numerical modeling
is based on computing effective material properties characterizing the heterogeneity pat-
terns. Thus, in contrast with the “original” models with oscillating material parameters,
the “homogenized models” are characterized by “constant” effective material coefficients,
so that the number of equations obtained by the discretization is reduced by several orders.

However, the “simplification” in the context of a reduced size of matrices featuring
the numerical model does not mean necessarily that the homogenized model is simpler
in its structure than the original one. When more complex heterogeneous continua are
considered, where qualitatively different phases interact at the “microscopic level”, the
homogenization results in qualitatively new models which differ in their structure from
any of the models describing the particular phases. In this way, new constitutive laws
can be obtained, characterized by effective material parameters with very clear physical
explanation. This is a great advantage of the homogenization-based modeling which cannot
be achieved easily by phenomenological approaches. What makes the homogenization
working better is the geometry and topology of the microstructure which is transformed
into the effective material coefficients by means of solving so-called “microscopic problems”.
This is demonstrated on several problems studied in the Dissertation .

The high-contrast media and thin structures, which both are in the focus of the Dis-
sertation , present a special example of combining qualitatively different media. The
adjectives “high” and “thin” are to be understood in the sense of material scaling : the idea
is to study mathematical models where the coefficients of the partial differential equations
associated with one of the phases depend on the characteristic size ε of the microstructure,
thereby strong heterogeneities are produced. This modeling approach was applied to study
waves in two-phase elastic composites with “weak” inclusions, where the elasticity is scaled
by ε2, or to describe poroelastic behaviour in double-porous media, where the scaling is a
natural consequence of velocity profiles in pores of the dual porosity. For homogenization
of thin structures the scaling is related to the thickness, which leads to reduced spatial
dimension of the problem.

These issues form the spine-bone of the Dissertation which is presented as a collection
of papers. They can be associated with one of the main themes: 1) wave propagation in
strongly heterogeneous solids, 2) perfusion in double-porous fluid-saturated media. Few
papers are devoted to the sensitivity analysis for optimal design of periodic microstructures.
All problems treated here by the homogenization are linear, or linearized, which allows for
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decoupling the so-called limit two-scale problems into the macroscopic and microscopic
ones.

The following topics are studied by homogenization methods:

• piezoelectric-elastic composites, [9, 21],

• waves in phononic crystals – elastic, or piezo-elastic high contrast composites, [1, 24,
22, 3, 4, 7],

• acoustic waves and transmission on thin (rigid) sieves, acoustic fluid in layers con-
taining obstacles, [20, 7],

• electromagnetic waves and transmission through heterogeneous dielectric layers, [7],

• sensitivity analysis of homogenized coefficients for optimization of piezoelectric-elastic
composites, [21],

• sensitivity analysis of band gaps for optimization of phononic materials, [23, 22, 21],

• sensitivity analysis of acoustic field for optimization of design of perforation (the sieve
in acoustic fluid), [18],

• Biot compressible medium – fluid saturated porous material (FSPM) with double
porosity, two-compartment model, application to bone poroelasticity, [5, 6, 15, 25],

• Biot incompressible medium – FSPM with double porosity, three-compartment model,
application to perfusion in deforming tissue, [12, 16],

• large-deforming FSPM with fluid inclusions, application to smooth muscle tissue,
[13, 10, 11, 8]

• large-deforming FSPM with double-porosity, application to perfusion, [19],

• Darcy flow in double-porous layer, application to perfusion, [14].

The work presented combines the theory of homogenization with its application to the
particular problems and concerns also some numerical issues related to the computational
homogenization-based multiscale modeling; it consists of three main steps: 1) solving lo-
cal problems for characteristic “microscopic” responses and evaluation of homogenized
(effective) material parameters, 2) solving the “macroscopic” problem with the effective
parameters to obtain a global solution, 3) reconstruction of quantities of interest (e.g.
stress, seepage flow) at the microscopic level for a selected macroscopic position. The last
step combines the global response with the local characteristic response and presents the
power of the multiscale modeling.
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1 Introduction

This thesis summarizes author’s contributions to the two-scale modeling of heterogeneous
media using the homogenization method which is based upon asymptotic analysis of con-
tinuum models describing “periodic microstructures”.

In the context of material modeling, the notion of homogenization is related usually to
some approximate treatment of heterogeneous continua designed as mixtures of different
constituents. The differences concern just values of the material parameters, or they are
more substantial – for instance mixtures of fluid and solid components are considered. In
the mechanical community, the homogenization is often understood in the sense of vari-
ous averaging techniques based on definition of the RVE, the reference volume element.
The RVE (small enough, but also sufficiently large) is subject to special loadings and the
structural responses allow to compute the effective parameters characterizing the mate-
rial behaviour. Apart of this averaging technique, there is the Eshelby theory which can
describe behaviour of composites with elliptic inclusions which do not affect each other,
being sparsely distributed at long distances.

The homogenization we have in mind is based on the asymptotic analysis of partial
differential equations describing the continuum behaviour, whereby the small parameter
describing the “microstructure size” influences space variation of the equation coefficients.
We focus on problems characterized by strong heterogeneities — large contrasts in material
coefficients; it is shown how the large contrast pronounced by its relationship with the
scale may lead to “limit behaviour” which is qualitatively completely different from the
one characterizing the original constituents.

Nowadays there exist several methods which allow one to obtain a model of homogenized
continuum, i.e. by studying asymptotic behaviour of partial differential equations (PDEs)
which governs a given problem characterized by the scale ε. The periodic unfolding
which has been introduced and employed within the homogenization community recently,
[CDG08], is relatively easy to use for linear, or quasi-linear problems. It presents a powerful
tool for homogenization of locally periodic media even for those who have merely a little
training in functional analysis.

Terminology. Although the notions like scale, or microstructure ale commonly under-
stood, they may have different meaning depending on the particular context. Therefore, in
Section 1 of the Dissertation we give a brief explanation of the following notions: struc-
ture of a medium, periodic / almost periodic structure, microstructure and microscopic level,
scale. There is explained also some technical terminology which is referred to frequently
throughout the text: representative periodic cell (RPC), Y-periodic function, corrector (basis)
function, local and global problems.

Challenges and limitations. The asymptotic analysis of heterogeneous media pro-
vides a modeling tool which enables to retain important features of the structure (or
microstructure) while reducing complexity of the problem in its primary setting. Periodi-
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cally distributed structural details inducing some fluctuations of the physical fields can be
condensed into the homogenized coefficients of the limit macroscopic (i.e. homogenized)
model. Its numerical discretization leads to a computationally tractable problem which
can be solved much cheaper than the original problem discretized with enormously large
numbers of degrees of freedom, such that a huge computational power would be required
to obtain a solution. Obviously, the benefits of “simplified” models obtained by homoge-
nization is even more challenging when inverse problems are treated, like optimal design
of the material structure.

However, the homogenized models describe the asymptotic behaviour, so that the limit
behaviour is just an approximation of the reality which corresponds to a given scale ε0 > 0.
Apparently, the approximation becomes more accurate with decreasing ε0, i.e. when the
macroscopic structure involves more and more repeating microstructural periods.

Once the global response is known, having solved the macroscopic problem, the detail
fluctuating response at the microscopic level can be computed for a given macroscopic
position x. This procedure is often called the microscopic response recovery and is based
on the corrector functions. They are obtained by combining the macroscopic solution at x
with the local corrector basis functions. Thus, also the gradients of the quantity of interest
can be obtained, like strains, stresses, or seepage velocities in porous media.

Models with scale-dependent parameters, like models of large contrast composites as
an example, may amplify some special effects when passing to the limit with ε → 0.
For instance, limit model of the high contrast elasticity medium exhibits the dispersive
behaviour, although the standard composites lead to a nondispersive medium which, in
the limit, is characterized by the homogenized elasticity and by the mean-value of the
density. In contrast, the ε2-scaling of the elasticity coefficients in one of the composite
constituents results in a frequency-dependent homogenized mass coefficients, hence the
wave dispersion is obtained even in the limit ε→ 0.

It is worth to note that the standard homogenized model of composites preserve the
homogeneous medium when all the constituents are identical, i.e. homogenization of a
homogeneous material results in the same material. This is not possible, in principle,
for a heterogeneous medium with scale-dependent parameters which, providing a strong
heterogeneity, does not allow to obtain any standard homogeneous medium in the limit.

Topics addressed in the Dissertation. The Dissertation provides an introduction
to some selected author’s papers appended as full texts. Moreover, some extending topics
were included in the introductory part ; although not involved in the appended papers, they
are closely related from the theoretical point of view (e.g. homogenization of visco-elastic
materials and fading memory phenomenon), or they show further applications which are
in the author’s research focus, like homogenization in optics.

The main issues discussed in the Dissertation are the following:

• Homogenization applied in wave propagation problems. Only solid compos-
ite materials are considered here (an extension for fluid saturated media has been
addressed by the author and will be reported in a forthcoming paper). The main
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focus is in the phononic materials (“band-gap materials”), characterized by large
heterogeneity in the elasticity coefficients, and in the acoustic transmission on perfo-
rated interfaces immersed in the acoustic fluid. Extensions to electromagnetic waves
and piezoelectric composites are discussed also. Since all these topics are concerned
with material engineering, the issue of optimal design and sensitivity analysis with
respect to microstructural parameters is addressed.

• Homogenization of fluid-saturated porous materials (FSPM) with double
porosity. It is shown how different topologies of the microstructure with respect
to double porosity lead to qualitatively different models. An extension for large-
deforming media was proposed, which is based on linearized subproblems. Finally,
homogenization of the fluid perfusion in layered double-porous medium is described.
These topics have applications in modeling the tissue perfusion and in modeling bone
poroelasticity.

1.1 Periodic unfolding and homogenization

The periodic unfolding method [CDG08] used in homogenization is an alternative to other
homogenization techniques based on asymptotic analysis (see [CD99] and references therein),
like classical asymptotic expansion methods, cf. [SP80], or two-scale convergence [All92].
The “unfolding method” (UFM) is employed in the prevailing part of papers included in
the Dissertation . This method is relatively easy to use for linear, or quasi-linear prob-
lems and is very close to the two-scale convergence. Unlike the latter method, the UFM
uses through the standard convergence of “unfolded” functions (sequences) defined in the
Cartesian product of the macroscopic domain Ω and the representative periodic cell Y
characterizing the microstructure.

To explain the idea, we consider domain Ω ⊂ R3 being generated as a periodic lattice
by the representative cell. Let Y = Πi=1,2,3]0, ȳi[ and assume that Ω ⊂ R3 can be covered
by copies of εY , i.e. there is a set of integer multi-indices KΩ ∈ Z3 so that:

Ω = inter
⋃

k∈KΩ

Y ε(ξ) with Y ε(ξ) = ξ + εY , ξi = εkiȳi (no summation) , (1)

where Y is the closure of Y and ε0 ≥ ε > 0. This restriction of the shape of Ω is artificial
to simplify the framework and it is not needed in general. Domain Y represents one period
of a perfectly periodic “microstructure” constituting the medium.

The coordinates of the position can be split into the “coarse” and “fine” parts. For a
given finite ε > 0,

x ≡ ε
[x
ε

]
Y

+ ε
{x
ε

}
Y

= ξ + εy , where y =
{x
ε

}
Y
∈ Y and ξ = ε

[x
ε

]
Y
, (2)

where ξ is given according to (1); such a decomposition is unique, once Y is defined (see
Fig. 1). Note that the Gauss bracket [zi]Y , i = 1, 2, 3 is the whole part of zi/ȳi and {zi}Y
is the reminder.
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Figure 1: Lattice periodic structure of body Ω. Coordinate split into the coarse and the
fine parts.

By virtue of the coordinate decomposition (2), any function ψ of x can be unfolded
into a function of x and y; in a simplified case, the unfolding operator Tε(�) can be defined
by the following relation:

Tε(ψ(x)) = ψ̃(ξ(x), y(x)) = ψ(ξ(x) + εy),

where ξ(x) and y(x) are introduced according to (2). For all functions ψ and φ, the three
following properties are crucial:

i) Tε(ψ(x)φ(x)) = Tε(ψ(x))Tε(φ(x)) ,

ii)

∫
Ω

ψ(x) dx =

∫
Ω

1

|Y |

∫
Y

Tε(ψ)(x, y) dx dy ,

iii) Tε(∇xψ(x)) =
1

ε
∇y (Tε(ψ)(x, y)) ,

(3)

where ∇x and ∇y are the gradient operators with respect to x and y respectively. Due
the integral transformation (3)2, the standard notion of weak convergence in a suitable
functional space W (Ω, Y ) can be used (typically W (Ω, Y ) = L2(Ω× Y )).

In homogenization, the key issue is convergence of differential operators, like gradients.
We can illustrate two situations which occur in problems related to strongly heterogeneous
media. Let W#(Y ) be a space of Y -periodic functions, and consider a recovery sequence
{uRε}, ε→ 0 bounded in space W (Ω), where uRε = u0ε+εu1ε and its gradient are unfolded,
as follows:

Tε
(
uRε
)

= u0ε(ξ + εy, y) + εu1ε(ξ + εy, y) ,

Tε
(
∇uRε

)
= ∇xu

0ε(x, y) +
1

ε
∇yu

0ε(x, y) + ε∇xu
1ε(x, y) +∇yu

1ε(x, y) ,
(4)

where u0ε(x, ·) and u1ε(x, ·) ∈ W#(Y ). Further assume the following weak convergences:
u0ε ⇀ ū0, Tε(u0ε) ⇀ u0, Tε(u1ε) ⇀ u1, where u0, u1 are two-scale functions in (x, y) ∈ Ω×Y
and ū0 is the mean value of u0(x, y) given by |Y |−1

∫
Y
u0(x, y)dy.
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For all suitable given test functions ψ(x, y), we consider two particular situations of
convergence of gradient

1. Case of minor fluctuations – gradient correction:∫
Ω

∇uRε(x)ψ(x,
x

ε
) =∼
∫

Ω×Y
Tε
(
∇uRε

)
(x, y)ψ(x, y)→∼

∫
Ω×Y

(∇xu
0 +∇yu

1)ψ ,

where ∇yu
0 = 0, i.e. u0(x, y) ≡ ū0(x). Thus, u0 presents the macroscopic part, being

independent of the microscopic variables.

2. Case of strong micro-macro interactions :

ε

∫
Ω

∇uRε(x)ψ(x,
x

ε
) = ε ∼

∫
Ω×Y
Tε
(
∇uRε

)
(x, y)ψ(x, y)→∼

∫
Ω×Y
∇yu

0(x, y)ψ(x, y) ,

whereby u1 = 0, i.e. the “classical” fluctuations u1 are of a lower magnitude which
are not captured by the first-order homogenization.

The first case is commonly used for standard composites with scale-independent co-
efficients The second case is characteristic for media with coefficients diminishing with
decreasing size of the microstructure; for example, such a model can approximate defor-
mations of very soft elastic material. Combination of the two cases arises in modeling large
contrast composites, therefore, it is of great importance for this Dissertation .

Literature used , related to Section 1 (selection): [All89] [All92] [Ben78] [Bra02] [CD99]
[CDG08] [CDGO08] [CSJP99] [MT07] [NNH] [OSY92] [SV04] [Zv02]

2 Wave propagation and dispersion in heterogeneous

media

In the context of the homogenization method, waves in solid composites and solid-fluid
mixtures have been discussed e.g. in [SP80]. The classical treatment of elastic waves leads
to vanishing wave dispersion in the limit ε → 0, however, the approach reported in the
Dissertation allows to retain the dispersion properties even in the limit; this is possible
due to the strong heterogeneity – large contrast in the elasticity coefficients and the special
scaling ansatz of these coefficients. Besides the elastic composites, the Dissertation
addresses also some other topics related to wave propagation, namely the following ones
were considered:

1. piezo-materials, i.e. homogenization of piezoelectric composites,

2. phononic materials, i.e. homogenization of vibrating elastic composites with large
contrasts in elasticity of the components, which confines propagation of waves for
certain polarizations and frequency bands,
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3. acoustic waves on a perforated interface, i.e. homogenization of the acoustic trans-
mission conditions taking into account the geometry of periodic perforations,

4. wave propagation of electromagnetic waves in heterogeneous media.

Combinations of all these topics are natural in the view of modeling smart systems
transmitting waves:

• Piezo-phononic materials form a quite natural extension of the purely elastic phononic
materials, they provide even more flexibility in designing smart devices, due to possi-
ble interplay between the electric field and deformations. The homogenization issues
were discussed in [22, 23, 3].

• There is a natural application of the above mentioned 3rd topic in vibro-acoustics.
It is desirable to extend the acoustic transmission conditions for compliant perforated
plates, when the plate elasticity cannot be neglected. Moreover, the surface acoustic
waves propagating along the interface may interfere with the plate structure – the
plate can be constructed as a phononic, or piezo-phononic material, so that band gaps
of the plate can influence qualitatively the acoustic transmission in the surrounding
medium.

• For homogenization of the electromagnetic waves, analogical methods and modeling
approaches are applied, as those introduced in the study of elastic waves. Moreover,
in combination with piezoelectric materials, coupling between acoustic and electro-
magnetic waves is a relevant issue.

2.1 Piezo-materials

The piezoelectric effect, coupling deformation and the electric field, is the principle of
many smart systems. Apart of vast industrial applications in building electronic devices,
piezoelectricity of dry bone indicates a possible usage of this effect in development of new
bio-materials. Such idea was considered in [9] where homogenization of elastic anisotropic
inclusions populating the piezoelectric matrix was described. The electro-mechanic trans-
duction plays important role in controlling the acoustic wave propagation; in this context,
homogenization of piezoelectric (PZ) composite was treated in [22, 3].

Properties of a three dimensional body made of the PZ material are described by three
tensors: the elasticity tensor cεijkl, the dielectric tensor dij and the piezoelectric coupling
tensor gεkij, where i, j, k = 1, 2, . . . , 3. The following symmetries hold: cεijkl = cεjikl = cεklij,
dεij = dεji and gεkij = gεkji. The state of the PZ material is described by the displacement field
uε and the voltage (electric potential) ϕε. The PZ coupling is represented by coefficients gεkij
involved in the constitutive relations for the stress, σε = (σεij) and the electric displacement
Dε = (Dε

k)

σεij = cεijklekl(u
ε)− gεkij∂kϕε,

Dε
k = gεkijekl(u

ε) + dεkl∂lϕ
ε.

(5)
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The local static equilibrium of the PZ material is expressed by the differential equations

divσε = f ε, divDε = qε, (6)

where f ε and qε are the volume force and charge, respectively.
Homogenization of a standard PZ heterogeneous medium leads to the effective consti-

tutive law of the form (5) whereby the effective material parameters are computed for a
specific microstructure. In [21] we show that combination of two standard PZ materials
can give rise a new material with unusual and interesting properties (new non-zero entry in
the coupling tensor) — this is the key for designing the so-called metamaterials, cf. [23, 7],
and the homogenization method serves as an efficient computational tool.

The PZ materials with large contrasts (respected by scaling in analogy with (8)) in all
coefficients involved in (5) were considered in homogenization of phononic materials, see
[22, 3].

2.2 Phononic materials

The phononic materials (crystals) are multi-phasic (bi-phasic) elastic media with periodic
structure and with large contrasts in elasticity of the phases. Often they are called the
phononic band-gap materials due to their essential property to suppress propagation of
elastic waves in certain frequency ranges. The phononic crystals are used in modern tech-
nologies to generate frequency filters, beam splitters, sound or vibration protection devices
(for noise reduction), or they may serve as waveguides. Similar phenomena in the propa-
gation of the electromagnetic field were studied even before in the context of the photonic
crystals.

The method of homogenization provides a useful modeling tool which allows for pre-
diction of the band gap distribution for stationary or long guided waves. The “standard
computational approach” based on a full heterogeneous model requires to evaluate the
whole Brillouin zone for the dispersion diagram reconstruction; as the consequence, it
leads to a killing computational complexity. On the other hand, the homogenized model
captures the essential features of the phononic material and may serve a good approxima-
tion of the band-gap prediction, while keeping the computational complexity at a very low
level. As an advantage, the homogenized model can be employed in inverse problems like
optimal design of phononic structures.

2.2.1 Periodic strongly heterogeneous material

We consider an open bounded domain Ω ⊂ R3 and the reference (unit) cell Y =]0, 1[3 with
an embedded inclusion Y2 ⊂ Y , whereby the matrix part is Y1 = Y \ Y2. Let us note, that
Y may be defined more generally as a parallelepiped. Using the reference cell we generate
the decomposition of Ω into the union of inclusions and the matrix. Inclusions have the
size ∼ ε,

Ωε
2 = inter

⋃
k∈Kε

ε(Y2 + k) , where Kε = {k ∈ Z| ε(k + Y2) ⊂ Ω} , (7)
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whereas the perforated matrix is Ωε
1 = Ω \ Ωε

2.
We assume that inclusions are occupied by a “very soft material” in the sense that the

coefficients of the elasticity tensor in the inclusions are significantly smaller than those of
the matrix compartment, however the material density is comparable in both the compart-
ments. Such structures exhibit remarkable band gaps; this was proved by both experiments
and modeling. Here, as an important feature of the modeling based on asymptotic analy-
sis, the ε2 scaling of elasticity coefficients in the inclusions appears; the following ansatz is
considered:

ρε(x) =

{
ρ1 in Ωε

1,
ρ2 in Ωε

2,
cεijkl(x) =

{
c1
ijkl in Ωε

1,
ε2c2

ijkl in Ωε
2.

(8)

In analogy, the PZ phononic materials can be treated.

2.2.2 Modeling the stationary waves

We consider stationary wave propagation in the medium introduced above. Although the
problem can be treated for a general case of boundary conditions, for simplicity we restrict
the model to the description of clamped structures loaded by volume forces. We assume
harmonic single-frequency volume forces F (x, t) = f (x)eiωt, where f = (fi), i = 1, 2, 3 is
its local amplitude and ω is the frequency. Correspondingly, a dispersive displacement field
with the local magnitude uε has the form U ε(x, ω, t) = uε(x, ω)eiωt. This allows us to
study the steady periodic response of the medium, as characterized by displacement field
uε which satisfies the following boundary value problem:

−ω2ρεuε − divσε = ρεf in Ω,

uε = 0 on ∂Ω,
(9)

where the stress tensor σε = (σεij) is expressed in terms of the linearized strain tensor
eε = (eεij) by the Hooke’s law σεij = cεijklekl(u

ε).

2.2.3 Homogenized model

Due to the strong heterogeneity in the elastic coefficients, the homogenized model ex-
hibits dispersive behaviour; this phenomenon cannot be observed when standard two-scale
homogenization procedure is applied to a medium without scale-dependent material pa-
rameters. In [1] the unfolding operator method of homogenization [CDG08] was applied
with the strong heterogeneity ansatz (8) and in [22] the analogous result was obtained for
the piezoelectric material with the strong heterogeneity scaling.

The resulting limit equations, as derived in [1], describe the structure behaviour at
the “macroscopic”scale. They involve the homogenized coefficients which depend on the
characteristic responses at the “microscopic” scale.
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The frequency–dependent homogenized mass involved in the macroscopic momentum
equation is expressed in terms of eigenelements (λr,ϕr) ∈ R×H1

0(Y2), r = 1, 2, . . . of the
elastic spectral problem which is imposed in inclusion Y2 with ϕr = 0 on ∂Y2:∫

Y2

c2
ijkle

y
kl(ϕ

r) eyij(v) = λr
∫
Y2

ρ2ϕr · v ∀v ∈ H1
0(Y2) ,

∫
Y2

ρ2ϕr ·ϕs = δrs . (10)

To simplify the notation we introduce the eigenmomentum mr = (mr
i ),

mr =

∫
Y2

ρ2ϕr. (11)

The effective mass of the homogenized medium is represented by mass tensor M ∗ = (M∗
ij),

which is evaluated as

M∗
ij(ω

2) =
1

|Y |

∫
Y

ρδij −
1

|Y |
∑
r≥1

ω2

ω2 − λr
mr
im

r
j ; (12)

The elasticity coefficients are computed just using the same formula as for the perfo-
rated matrix domain, thus being independent of the material in inclusions:

C∗ijkl =
1

|Y |

∫
Y1

cpqrse
y
rs(w

kl + Πkl)epq(w
ij + Πij) , (13)

where Πkl = (Πkl
i ) = (ylδik) and w kl ∈ H1

#(Y1) are the corrector functions satisfying∫
Y1

cpqrse
y
rs(w

kl + Πkl)eypq(v) = 0 ∀v ∈ H1
#(Y1) . (14)

Above H1
#(Y1) is the restriction of H1(Y1) to the Y-periodic functions (periodicity w.r.t.

the homologous points on the opposit edges of ∂Y ).
The homogenized equation of the “macromodel”, here presented in its differential form,

describes the macroscopic displacement field u :

ω2M∗
ij(ω)uj +

∂

∂xj
C∗ijklekl(u) = M∗

ij(ω)fj , (15)

where M∗
ij at the r.h.s. loading term appears due to the volume forces in (9) proportional

to the density.
Using this equation, the dispersion of guided waves can be studied, see [24]. Hetero-

geneous structures with finite scale of heterogeneities exhibit the frequency band gaps for
certain frequency bands. In the homogeneized medium, waves can be propagated provided
the mass tensor M ∗(ω) is positive definite, or positive semidefinite; this effect is explained
below.

We can derive a homogenized model analogous to (15) also for the piezoelectric phononic
(piezo-phononic) materials with “soft inclusions”, i.e. the scaling (8) is adopted also for
parameters dij and gkij, see (5). In this case, however, the spectral problem analogous to
(10) comprises an additional constraint arising from electric charge conservation, see [22, 3]
for details.
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2.2.4 Band gap prediction

As the main advantage of the homogenized model (15), by analyzing the dependence
ω →M ∗(ω) one can determine distribution of the band gaps; it was proved in [1], cf. [24]
that there exist frequency intervals Gk, k = 1, 2, . . . such that for ω ∈ Gk ⊂]λk, λk+1[ at
least one eigenvalue of tensor M∗

ij(ω) is negative. Those intervals where all eigenvalues γM
of M∗

ij are negative are called strong, or full band gaps. In the latter case the negative
sign of the mass changes the hyperbolic type of the wave equation to the elliptic one,
therefore, no waves can propagate. In the “weak” bad gap situation only waves with
certain polarization can propagate, as explained below.

The band gaps can be classified w.r.t. the waves polarization which is determined in
terms of the eigenvectors of M∗

ij(ω). Given a frequency ω, there are three cases to be
distinguished according to the signs of eigenvalues γrM(ω), r = 1, 2, 3 (in 3D), determining
the “positivity, or negativity” of the mass:

1. propagation zone – All eigenvalues of M∗
ij(ω) are positive: then homogenized model

(15) admits wave propagation without any restriction of the wave polarization;

2. strong band gap – All eigenvalues of M∗
ij(ω) are negative: then homogenized model

(15) does not admit any wave propagation;

3. weak band gap – Tensor M∗
ij(ω) is indefinite, i.e. there is at least one negative

and one positive eigenvalue: then propagation is possible only for waves polarized in
a manifold determined by eigenvectors associated with positive eigenvalues. In this
case the notion of wave propagation has a local character, since the “desired wave
polarization” may depend locally on the position in Ω.

In Fig. 2 we introduce a graphical illustration of the band gaps analyzed for an L-
shaped inclusions. If inclusions (considered in 2D) are symmetric w.r.t. more than 1 axis
of symmetry, than only strong band gaps exist. More details on the band gap properties
and their relationship to the dispersion of guided waves were discussed in [24]. For piezo-
phononic materials the above mentioned statements on the structural symmetry do not
hold in general because of the material anisotropy of piezoelectric materials, thus, typically
only the weak band gaps exist [3].

2.3 Acoustic wave transmission on perforated interfaces

Homogenization can be employed to develop approximate models of various transmis-
sion and transport phenomena on thin interfaces characterized by a “microstructure”
[CDGO08]. In the Dissertation , the homogenization is applied to approximate the
acoustic transmission between two halfspaces separated by an interface formed as a solid
(rigid) plate perforated periodically by holes of arbitrary shapes, so that the two halfspaces
are connected. We consider the acoustic medium occupying domain ΩG which is subdivided
by perforated plane Γ0 in two disjoint subdomains Ω+ and Ω−, so that ΩG = Ω+∪Ω−∪Γ0.
Denoting by p the acoustic pressure field in Ω+ ∪ Ω−, in a case of no convection flow, the

10



Figure 2: Left: weak band gaps (white) and strong band gaps (yellow) computed for an
elastic composite with L-shaped inclusions, the green bands are propagation zones (the
solid and dashed curves describe eigenvalues of M∗(ω)); Right: the first eigenmode of the
L-shaped clamped elastic inclusion.

acoustic waves in ΩG are described by the following equations (ω is the frequency of the
incident wave related to wave number k through the speed of sound propagation c = ω/k),

c2∇2p+ ω2p = 0 in Ω− ∪ Ω+ ,

+ boundary conditions on ∂ΩG ,
(16)

supplemented by transmission conditions on interface Γ0. In [20] such conditions were
obtained by the two-scale homogenization of a layer with an immersed sieve-like obstacle.
In Figure 3 we illustrate such a layer Ωδ = Γ0×] − δ/2, δ/2[⊂ R3 embedded in ΩG =
Ω+
δ ∪ Ω+

δ ∪ Ωδ ∪ Γ±δ . The acoustic medium occupies domain Ωε
δ = Ωδ \ Sεδ , where Sεδ is the

solid rigid obstacle which in a simple layout has a form of the periodically perforated slab.
However, the aim of the study [20] was to obtain transmission conditions which describe
quite general shape of periodic perforations.

To derive the transmission conditions, the acoustic waves in the layer were subject to
asymptotic analysis w.r.t. size of the perforation ε which is related to the thickness δ = hε,
where h > 0 is fixed. The acoustic potential pεδ satisfies the Helmholtz equation in Ωε

δ

c2∇2pεδ + ω2pεδ = 0 in Ωε
δ ,

c2∂p
εδ

∂nδ
= −iωgεδ± on Γ±δ ,

∂pεδ

∂nδ
= 0 on ∂Sεδ ∪ ∂Ω∞δ ,

(17)

where by nδ we denote the normal vector outward to Ωδ. Assuming convergence of the
interface fluxes (velocities) gεδ → g0 (in a sence), by homogenization ε→ 0, convergence of
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Figure 3: Left: global problem imposed in entire domain ΩG before homogenization of the
layer Ωδ. Right: representative cell of the periodic structure. The dark patterns represent
the obstacles in the fluid.

pεδ → p0 is obtained and (17) tranforms into the following equations involving homogenized
coefficients A,B, F and the layer porosity f ∗,

−∂α(Aαβ∂βp
0) + ω2f ∗p0 − iω∂α(Bαg

0) = 0 on Γ0 ,

−iωhBβ∂βp
0 + ω2Fg0 = −iω

1

ε0

[p]+− on Γ0 ,

Aαβ∂βp
0 = 0 on ∂Γ0 ,

(18)

where [p]+−/ε0 is the jump of p relative to the “real” layer thickness hε0 > 0 and is evaluated
on Γ0 by the acoustic potential field p in ΩG. To compute A,B, F , microscopic problems
have to be solved in the reference microscopic cell Y ∗ = Y \S, where domain S represents
the obstacle generating the perforation, see Fig. 3 (right).

Mic. #1 Mic. #3Mic. #2

Figure 4: Microscopic response in Y ∗ for different types of microstructures in 2D. B = 0
only for Mic. #1, while B = −0.251m for Mic. #2 and B = −0.897m for Mic. #3

For the “global problem” (16), the transmission conditions are presented in an implicit
form by equations (18): they couple [p]+− with normal derivatives ∂p/∂n+ = −∂p/∂n− =
−iωg0, whereby p0 describing the “in-layer” wave serves as an internal variable of the
model. Out of resonances, p0 vanishes when (Bβ) = 0, see Fig. 4
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Figure 5: Transmission losses for two perforation types: solid (mic1) microstructure #1,
dashed (mic3) microstructure #3, see Fig. 4. (Computed by V. Lukeš, December 2010)

To illustrate influence of the perforation design on the global acoustic response in
domain ΩG, in Fig. 5 the transmission losses for a waveguide fitted with two different
perforations on Γ0 is depicted.

2.4 On metamaterials and the design sensitivity analysis

By ’metamaterials’ we refer to materials which exhibit ’non-conventional material prop-
erties’. Those materials typically are not found in nature. Metamaterials are most often
man-made (artificial), being engineered using modern technologies for a wide range of ap-
plications. The principle of designing such materials is based on the multiscale approach:
by terminology used in this thesis, on composing different traditional materials attaining
a suitable structural arrangement at the “microscopic level”, we can modify the properties
observed at the “macroscopic level”. Thus, the apparent behaviour may depend on the
“microstructural” (nano-structural) interactions associated with a characteristic length.
Among the well-known examples we can mention the negative Poisson ratio materials in
elasticity, or the so-called left-handed materials in nano-optics. Moreover, due to multi-
physical interactions relevant at the smaller scale, the “macroscopic” material properties
associated with one field can be modified by other fields relevant at the “microscopic” level
where the interactions are non-negligible.

Metamaterial properties, therefore, emerge under the controlled influence of microstruc-
tures. Inclusions at the “microscopic” level described by their material properties and their
shape are to be designed in order to approach certain desired material properties.

As an example of metamaterial optimization, we can design a phononic material de-
scribed in Section 2.2.3 so that the lowest band-gaps are maximized. In [23] the non-smooth
sensitivity of the band gap bounds were developed, admitting also multiple eigen-modes
involved in the expansion of the mass tensor. In Fig. 6 an example of band gap maximiza-
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tion is illustrate using the “initial” and “optimized” band-gap diagrams and corresponding
reference cells. The design parameters described the inclusion shape.

Initial design

Optimized design

Figure 6: Left: band gap distribution in the initial and optimized structures; yellow – strong
gaps, white – weak gaps. Right: corresponding shapes of inclusion Y2 with illustrated von
Mises stress associated with the 2nd eigenmode, (λ2,ϕ2), see Sections 2.2.3 and 2.2.4.

Literature used , related to Section 2 (selection): [AK04] [BF04] [BCZ87] [BD94]
[HCK86] [HM03] [HN88] [MW07] [RD00] [SJ03] [JP06] [SP80]

3 Fluid saturated porous media (FSPM) with dual

porosity

The models of fluid saturated porous media (FSPM) which we have in mind are relevant
to the scale where individual fluid-filled pores are not distinguishable, so that at any
point of the bulk material both the solid and fluid phases are present, being distributed
according to the volume fractions, cf. [Cou04, dB00]. The phenomenological description
was developed by M. Biot [Bio55]; his model is considered here as a basis for modeling
media with large contrasts in the hydraulic permeability coefficients, thus, presenting the
strong heterogeneity. Such a modeling option is related to the notion of the double porosity
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[AB92, ADH90] which introduces yet another scale with even smaller characteristic size
than the one characterizing the “microscopic level”.

In the Dissertation two important and general phenomena are demonstrated when
homogenizing the FSPM:

• In high contrast media, in general, the topology of the microstructure decomposition
influences qualitatively the homogenization result. We consider the Biot continuum
where the strong heterogeneity (in the permeability coefficients) is introduced for
two different topologies of the reference cell decomposition. In the limit ε → 0, two
qualitatively different models are obtained.

• When evolutionary models are homogenized, the fading memory effect features the
resulting limit model. In the context of the FSPM, the memory effects of the ho-
mogenized constitutive laws arise from the fluid microflow governed by the Darcy
law.

3.1 Biot model and double porosity

The Biot model involves three essential constitutive laws: 1) the relationship between the
drained solid skeleton “macroscopic” deformation e(t, x), the fluid pressure in pores p(t, x)
and the total stress σ(t, x), 2) the relationship between the variation of the fluid content,
skeleton (macroscopic) deformation, and the fluid pressure, 3) the Darcy law relating the
seepage velocity, w(t, x), with “dynamic fluid pressure”, i.e. the static part p(t, x) and the
fluid inertia part. In the Dissertation , only quasistatic problems are studied so that the
following form of the equations is relevant:

−∇ · (IDe(u)) +∇ · (αp) = f ,

K−1w +∇p = 0 ,

α : e(u̇) +∇ ·w +
1

µ
ṗ = 0 ,

(19)

where ID is the elasticity tensor associated to the drained skeleton, K is the hydraulic
permeability (specific to a given fluid), α is the poroelastic stress coefficient and µ is the
Biot modulus which depends on compressibility of the solid skeleton and fluid. Obviously,
the three field formulation can be reduced to the two field formulation by eliminating w ,
so that (19) becomes

−∇ · (IDe(u)) +∇ · (αp) = f ,

α : e(u̇)−∇ ·K∇p+
1

µ
ṗ = 0 .

(20)

Further reduction of the model is possible when both the phases are incompressible, i.e.
when 1/µ→ 0 and α→ I .
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3.1.1 Double porosity and permeability scaling

The dual porosity denotes a “second” porosity in the “dual-porous” medium; it means
that the two porosities are qualitatively different. In our setting, the primary porosity is
featured by pores which are substantially larger than those of the “dual” porosity. In the
context of microstructures, the two porosities are associated with different levels of the
structure, i.e. with different characteristic lengths.

δ

εδ

ε

zoom by 1/ε

canalicular porosity

osteon

v

ρ

Tδ

S

1δ δ

Figure 7: Left: schematic illustration of the osteon double porous structure. Right: a
scheme explaining the permeability δ2-dependence due to the velocity profile in an array
of canals. The total perfused area S is perforated by canals with total cross-section Tδ
(bottom), each canal has the cross-section πρ2δ2; the square periodic cell is shown (middle)
as well as the velocity profile in one canal. (top).

Although the notion of the double porosity and of the double porous media are stan-
dard and generally accepted, see [Hor97] and the references cited therein, for the sake
of completeness, we shall give the reasons which justify modeling of the flow in the dual
porosity using the Darcy law with the high contrast permeability. In the context of the
homogenization procedure, the permeability coefficients depend on the characteristic scale
of the representative volume.

The double porous media are frequent in nature. Besides various fissured rocks, the
dual porosity is presented by the canalicular network of the so-called matrix constituting
the structure of cortical bone tissue, see Fig. 8, [25].

In the dual porosity, the permeability coefficient is proportional to ε2, where ε is the
dimensionless scale parameter. In Fig. 7, the dual porosity is represented by an array
of“horizontal” channels of the canalicular porosity. The mean velocity in each channel is
proportional to the pressure gradient, being governed by the Poiseuille flow, whereby the
proportionality constant is given by the square of the radius, i.e. by δ2. The ratio between
the macro-, meso- and micro- scales is the same, i.e. δ ∼ ε, hence the scale dependent
permeability ∼ ε2: the seepage in the dual porosity is given w ε = −ε2K ν∇p, where K ν

is disproportional to the fluid viscosity.
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3.2 Homogenization of FSPM with application in biomechanics

The theory of FSPM has been developed in adherence to applications in civil engineering,
oil industry, mining and rock mechanics. Also the tissue biomechanics presents a new
challenging field of applications, due to large complexity of processes and interactions
undergoing in living tissues.

In contrast with soils, rocks and materials used in civil engineering, the biological ma-
terials exhibit much larger organization of their structure. To illustrate the difference, one
can consider seepage and consolidation in moist soils, on one hand, and the sophisticated
system of heart muscle perfusion, on the other hand. In both these cases, the material
contains the solid and liquid phases, however, the structure of pores is very different.

In the Dissertation several models of biological tissues were treated using homoge-
nization with the dual porosity ansatz.

• The smooth muscle tissue model [13] is based on the large deforming FSPM with
locally periodic structure. The representative cell contains the fluid-filled inclusion
representing the muscle cell. The cytoskeleton is approximated very roughly as a truss
with prestretch corresponding to the cell contraction. The extracellular space (the
matrix) represents the dual porosity, whereby fluid can flow between the matrix and
the cell due permeability of the cell surface. Although from the physiological point of
view this model is naive, it contains some important features and can serve as a basis
for further model improvements and investigations of the mechanical interactions
related to various regimes of tissue contraction.

• The compact bone poroelasticity model [25, 15] describes interactions between defor-
mation of the bone tissue and induced flow in the double-porous structure consisting
of the Havers-Volkmann channels (the primary porosity) and the canaliculi (the dual
porosity). This model is being developed to understand how the flow in the canaliculi
populated by mechano-sensitive bone cells depends on the macroscopic load, since
this phenomenon influences significantly the bone tissue growth and remodeling.

• The model describing blood perfusion in deforming tissue [12, 16, 19] is relevant to
the lower levels of the “perfusion tree”. The two systems of channels characterize the
arterial and venous sectors which exchange the fluid (bood) through the matrix rep-
resenting the dual porosity. The model has been extended for the large deformation
using the linearization based on the updated Lagrangian formulation.

• The model of blood perfusion in “layered tissues” [14] is an attempt to cope with
branching organization of the perfusion tree. The tissue periodicity is confined to
two directions associated with the layer mean-surface, whereas there is no periodicity
in the transversal direction. Thus, the tissue volume in 3D can be decomposed into
several layers and the homogenization provides several 2D coupled problems, one per
each layer.
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Ym

Yc

Figure 8: Left: a micrograph of the osteon porosity arranged in cylindrical geometry. The
Haversian canals form the center of each osteon bounded by the cement line. The osteon
matrix is penetrated by canalicular porous network arranged almost radially with respect
to the osteon axis. (The color image provided by courtesy of Zbyněk Tonar.) Right:
microstructure decomposition w.r.t. the dual porosity: dark pink: Ωc, light pink: Ωm, and
the representative periodic cell Y decomposition.

3.2.1 Two compartment topology of the microstructure

The two compartment topology of the microstructure is convenient for modeling bone
tissue. Its structure is formed by Haversian and Volkmann channels (the primary porosity)
and by porous matrix perforated by canaliculi (the dual porosity).

For finite scale ε > 0 domain Ω ⊂ R3 is decomposed into two principal nonoverlapping
parts, the channels Ωε

c and the matrix Ωε
m, so that Ω = Ωε

m∪Ωε
c∪Γεmc, Γεmc = Ωε

m∩Ωε
c is the

channel-matrix interface. Domain Ω is generated as a periodic lattice using a representative
periodic cell Y = Yc ∪ Ym ∪ Γ, see Fig. 8 (right), where Yc generating Ωε

c represent the
channels of the primary porosity separated from the matrix Ym = Y \ Yc by interface Γ.

The model of the homogenized bone tissue is obtained using the Biot model (19). Fol-
lowing the double-porosity ansatz, the permeability K ε is scaled by ε2 in the dual porosity
represented by Ym, namely using the unfolding operator Tε(K ε(x)) = ε2χm(y)Km(y) +
χc(y)K c(y) with y ∈ Y , x ∈ Ω, where χd, d = m, c is the characteristic function of domain
Yd.

Formulation of the macroscopic problem. The homogenized equations involve sta-
tionary and non-stationary homogenized coefficients which serve as convolution kernels
and, thus, are responsible for the fading memory effects. These effects are induced by
microflows in the dual porosity, due to the fluid-structure interaction at the microscopic
level.

In order to compute the homogenized coefficients, microscopic problems must be solved,
so that the characteristic responses of the computational cell Y are obtained, see Fig. 9.

All details upon derivation of the homogenized equations can be found in [25]. The
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Figure 9: Characteristic response in the reference cell Y – illustration of corrector basis
functions (left) and anisotropy of the permeability in the dual porosity (right).

macroscopic problem can be presented in the weak form: for a.a. t ∈]0, T [ find couple
(u(t, ·), p(t, ·)) ∈ V ×H1(Ω) (V ⊂ H1(Ω) is determined by kinematic boundary conditions)
with initial condition p(0, ·) = 0, such that∫

Ω

Eijklekl(u)eij(v) +

∫
Ω

∫ t

0

Hijkl(t− τ)ekl(
d

d τ
u(τ)) dτ eij(v)

−
∫

Ω

(Bij + Pij(0)) p eij(v)−
∫

Ω

∫ t

0

d

d t
Pij(t− τ)p(τ) dτ eij(v) =

∫
∂σΩ

g · v dΓ ,

∫
Ω

(Bij + Pij(0)) eij(
d

d t
u) q +

∫
Ω

∫ t

0

d

d t
Pij(t− τ)eij(

d

d τ
u(τ)) dτ q

+

∫
Ω

Cij∂jp∂iq +

∫
Ω

qM d

d t
p+

∫
Ω

q

∫ t

0

N (t− τ)
d

d τ
p(τ) dτ = 0 ,

(21)

for all v ∈ V0 and q ∈ H1(Ω).
Model (21) was implemented numerically, details on the FE discretization and evalua-

tion of the convolution integrals can be found in [15].

3.2.2 Three compartment topology

In perfused tissues the three compartments correspond to two systems of channels (the
arterial and venous sectors) separated by the matrix representing the tissue penetrated by
capillaries which form the dual porosity.

In analogy with the two-compartment model, for finite scale ε > 0 domain Ω ⊂ R3 is
decomposed into three principal nonoverlapping parts, the channels Ωε

α, α = 1, 2 and the
matrix Ωε

3, so that Ω =
⋃
i=1,2,3 Ωε

i ∪Γε23∪Γε13, where Γεα3 are the channel-matrix interfaces.
The reference cell Y is decomposed accordingly: the channels are represented by Y1 and
Y2 which are mutually disjoint, i.e. Y1 ∩ Y2 = ∅, being separated by Y3 = Y \

⋃
α=1,2 Yα.

Obviously, domain Ωε
3 is connected.
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Figure 10: Left: a three-compartment periodic structure, Right: the scheme of the mi-
crostructure decomposition.

The homogenization procedure [12, 16] is applied to the Biot model (19) with the
incompressibility constraints, which yields α = 0 and 1/µ = 0. By virtue of the double-
porosity ansatz, the permeability K ε is scaled by ε2 in the dual porosity represented by
Y3, so that using the unfolding operator Tε

(
Kε
ij(x)

)
= ε2χ3(y)K3

ij(y)+
∑

α=1,2 χα(y)Kα
ij(y),

y ∈ Y , x ∈ Ω.
As the result of the homogenization, a two-scale system of equations is obtained. Using

the Laplace transformation, the two-scale problem is decoupled: the local microscopic
problems are solved in reference cell Y to obtain the characteristic responses. Consequently,
the homogenized coefficients involved in the macroscopic problem can be evaluated.

Local microscopic problems. Besides the steady-state correctors, the time-variant
corrector basis functions are defined. For brevity, we introduce the following general form of
the local evolutionary problems (see [16]): Find (ω̃(t, y), π̃(t, y)) such that ω̃(t, ·) ∈ H1

#(Y )
and π̃(t, ·) ∈ H1

#0(Y3) satisfy the following identities for t > 0 (the space H1
#0(Y3) ⊂ H1

#(Y )
contains functions with zero trace on the matrix-channel interfaces Γ2,3):∫

Y

[ID(y)ey(ω̃(t, y))] : ey(v)−
∫
Y3

d

d t
π̃(t, y)divyv = 0 ∀v ∈ H1

#(Y ) ,∫
Y3

ψdivyω̃(t, y) +

∫
Y

[K 3∇yπ̃(t, y)] · ∇yψ = g(ψ) ∀ψ ∈ H1
#0(Y3) ,

(22)

where functional g(ψ) and the initial condition on π̃(0, ·) is specified. Actually, this generic
problem is identified for two cases: local problems for computing strain-associated correc-
tors, (ω̃rs, π̃rs), and those which are related to channel pressures, (ω̃α, π̃α).

Homogenized coefficients are evaluated using the corrector basis functions. They
express an “integral” form microstructural responses driven by the macroscopic quantities.

• Eijkl is the elasticity tensor. It expresses the overall elasticity (stiffness) of the dried
porous skeleton represented by domain Y , thus, including both the porosities.
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• Hijkl(t) is the viscosity tensor related to the macroscopic creep and relaxation phe-
nomena; it expresses the microflow (perfusion) in the dual porosity Y3.

• R1
ij(t) and P̄1

ij are the poroelastic coefficients which reflect two phenomena: the
elasticity of the dried skeleton in Y and permeability of the dual porosity.

• G̃+(t) and G∗ are the perfusion coefficients which control the amount of the fluid
exchange between sectors Y1 and Y2.

• Cαij is the homogenized permeability of the primary porosity in Yα.

Macroscopic perfusion model describes parallel flows through the two channel sys-
tems in deforming medium. The macroscopic displacement field, u0(t, ·) ∈ V ⊂ H1(Ω),
and the two macroscopic pressures, p1(t, ·), p2(t, ·) ∈ H1

0 (Ω) satisfy the equilibrium equation
(compare with the two-compartment model (21))∫

Ω

[
Eijklexkl(u0(t, ·)) +

∫ t

0

Hijkl(t− τ)
d

d τ
exkl(u(τ, ·)) dτ

]
exij(v)

−
∫

Ω

exij(v)

∫ t

0

R̃1
ij(t− τ)[p1(τ, ·)− p2(τ, ·)] dτ

−
∑
α=1,2

∫
Ω

[
|Yα|
|Y |

δij + P̄αij
]
pα(t, ·) exij(v) =

∫
∂σΩ

g · v dS ∀v ∈ V 0 ,

(23)

and the two balance-of-mass equations for α, β = 1, 2, β 6= α∫
Ω

Cαij ∂xj pα(t, ·) ∂xi q +

∫
Ω

q G∗ d

d t
(pα(t, ·)− pβ(t, ·))

+

∫
Ω

q

∫ t

0

G̃+(t− τ)
d

d τ
(pα(τ, ·)− pβ(τ, ·)) dτ

+

∫
Ω

q

∫ t

0

R̃α
ij(t− τ)

d

d τ
exij(u

0(τ, ·)) dτ

+

∫
Ω

q

[
|Yα|
|Y |

δij + P̄αij
]

d

d t
exij(u

0(t, ·)) = 0 , ∀q ∈ H1
0 (Ω) ,

(24)

which govern the fluid flows in the two channels and its redistribution between them. The
terms involving the pressure difference pα − pβ reveal the amount of perfused fluid; while
coefficient G∗ is related to transition effects, the perfusion in a steady state is determined
by the convolution term involving G̃+(t− τ), since G̃+(+∞) > 0.

The three-compartment two-scale model was implemented in the SfePy FE code [2].
As an example, in Fig. 11 the pressure and perfusion velocities are displayed for a deforming
block of tissue with microstructure similar to that of Fig. 10, right.
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Figure 11: Deformed perfused block: macroscopic pressures p1 and p2 displayed by color
map at time tA = 60 s, (a), (c) and tB = 80 s, (b), (d), the associated perfusion velocities are
indicated by arrows. Deformation enlarged for visualization. (Computed by R. Cimrman,
2009)

3.3 Large deforming FSPM and linearization

Homogenization of nonlinear partial differential equations is quite cumbersome, in general.
The theoretical results, if any, are derived in a generalized frameworks, like the G- or
Γ-convergence, [Bra02]. In any case, it is not possible to decouple the scales in terms
of a multiplicative decomposition based on the “autonomous characteristic responses” of
microstructures.

An alternative approach to treat the nonlinear problems is based on homogenization of
linear subproblems arising from an incremental numerical solving procedure, see [10, 11,
17, 8]. The homogenization procedure can be described by the following steps:

• A reference configuration at time t is considered (the time can be artificial, associated
with iterations of solving the nonlinear problem). The configuration is defined by
locally periodic structure and by the reference state in the form of bounded two-scale
functions.

• The homogenization is applied to the linear subproblem: given the configuration
at time t, compute the increments associated with time increment ∆t. The locally
periodic microstructure and the reference state define the oscillating coefficients of
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the linearized equations. Then the standard homogenization is applied, such that
on solving local microscopic problems, the characteristic responses (corrector ba-
sis functions) are obtained and the homogenized coefficients are evaluated at any
“macroscopic position” x.

• The homogenized subproblem is solved at the macroscopic level, thus the increments
of the macroscopic response are obtained.

• In order to establish new microscopic configurations at time t + ∆t and at “any”
macroscopic position, the macroscopic response is combined with the local micro-
scopic characteristic responses to update the local microscopic states. Then the next
time step can be considered and the whole procedure repeats.

In contrast with linear problems, where the microscopic responses are solved only once,
in nonlinear problems the local microscopic problems must be solved for any iteration (time
step) and at “any” macroscopic point, cf. [11, 17, 8]. In fact, the homogenization leads
to a two-scale domain decomposition: the macroscopic domain is represented locally by
“microscopic” cells where the microscopic problems must be solved. The data (i.e. the
solutions) are passed between the two levels after any iteration (the time increment step),
so that the two-scale problem remains tightly coupled during the whole solution procedure.
This is the major difficulty which affects directly the complexity of the numerical treatment.

3.3.1 Incremental formulation

We consider the subproblem of computing the new configuration at time t + ∆t, given
a finite time step ∆t and the configuration Cε,(t) at time t, which is determined by the
triplet {Ω, F ε

ij(x), pε(x)}(t) for x ∈ Ω, i.e. we write Cε,(t) = {Ω, F ε
ij, p

ε}(t), where F ε
ij is the

deformation gradient, Jε = detF ε
ij, and pε is the interstitial fluid pressure.

Let Lnew(v) be the functional involving the instantaneous boundary and volume forces
at time t + ∆t. The finite increments of displacement ∆uε ∈ V 0(Ω) and hydrostatic
pressure ∆pε ∈ L2(Ω) verify the variational equations (25)-(26) which express respec-
tively the balance of stresses – quasi-static equilibrium equation (notation: I = δij,
II = 1/2(δikδjl + δilδjk), ηij(v) = (∂vk/∂xi)(∂vk/∂xj))∫

Ω

[IDeff,ε : e(∆uε)] : e(v ε)(Jε)−1dx+

∫
Ω

τ eff,ε : δη(∆uε; v ε)(Jε)−1dx

−
∫

Ω

∆pε divv εdx+

∫
Ω

pε∇(∆uε) : (II− I ⊗ I ) : ∇v εdx =

L(v ε)−
∫

Ω

τ ε : e(v ε)(Jε)−1dx ∀v ε ∈ V (Ω) ,

(25)

and the Darcy flow in the dual-porous structure∫
Ω

qε div∆uεdx+ ∆t

∫
Ω

K ε · ∇(pε + ∆pε) · ∇qεdx = 0 , ∀qε ∈ H1(Ω) . (26)
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Above the total Kirchhoff stress τ εij is defined as follows:

τ εij = −Jεδij pε + τ eff,ε
ij , where τ eff,ε

ij = µε(Jε)−2/3 dev(F ε
ikF

ε
jk) . (27)

We assume the same kind of heterogeneous media, as described in Section 3.2.2, thus
involving 3 compartments (represented by the reference cell decomposition Y = Y1∪Y2∪Y3),
whereby the dual porosity is associated with Y3.

3.3.2 Macroscopic equations of the homogenized incremental problem

Given the local microscopic configurations C(t)(x), the microscopic responses are solved for
time increment ∆t. Using these responses, the homogenized coefficientsAijkl, Bij, G

β
α, C

β
ij, Qij

and the stress Sij are computed, which constitute the equations of the macroscopic incre-
mental problem: find displacements ∆u0 ∈ V (Ω) and pressures ∆p0

β ∈ H1(Ω), β = 1, 2
which satisfy:

Equilibrium equation:∫
Ω

(
Aijkl∂l∆u

0
k −

∑
α=1,2

Bα
ij∆p

0
α

)
∂jv

0
i dx =L(v 0)−

∫
Ω

(Qij + Sij) ∂jv
0
i dx (28)

for all v 0 ∈ V 0(Ω) ,

Diffusion equations: for β = 1, 2,∫
Ω

q0
β

(
Bβ
ij∂j∆u

0
i +

∑
α=1,2

Gβ
α∆p0

α

)
dx+

∫
Ω

Cβ
kl∂l(∆p

0
β + p0

β) ∂kq
0
βdx = −

∫
Ω

geff
β q

0
βdx , (29)

for all q0
β ∈ H1(Ω).

It is worth noting that the homogenized problem involves two diffusion equations de-
scribing perfusion in the two compartments labeled by β = 1, 2. This is the direct conse-
quence of a) the dual porosity in Y3 and b) topology of the decomposition of Y with Y1

disconnected from Y2.
Upon computing the macroscopic increments, the local microscopic configurations must

be updated, to continue the time stepping algorithm for the next time increment. At a
certain time level, which is referred to by superscript (t), the macroscopic configuration

is represented by the triplet M(t) ≡ {Ω(t), F
(t)
ij (x), p

(t)
α (x)| x ∈ Ω(t)} and the microscopic

configurations C(t)(x) are defined by deformations and pressure in local cell Y (x).
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3.4 Homogenization of perfusion in thin layers

Homogenization can be adapted also for structures where the periodicity is restricted to
directions within a given plane, as pointed out in Section 2.3.

In paper [14] we derived a homogenized model of the Darcy flow in a thin porous non-
deformable layer. The reference periodic cell is composed of the matrix representing the
dual porosity and of two mutually disconnected channels representing the primary porosity.
The resulting model describes macroscopic redistribution of the fluid in the plane to which
the thin layer is reduced. Thus, a 3D block of a given heterogeneous body can be replaced
by a finite number of the homogenized layers, being supplemented by coupling conditions
that govern the fluid exchange between the adjacent layers.

One of the promising applications of the model is the blood perfusion in the brain
tissue, see Fig. 12 (left). Although a detailed morphological study is not completed yet,
the following assumptions, however simplifying, seem to be relevant:

• change of the microstructure with the depth in the tissue (the radial direction), as
indicated by two layers,

• repeated patterns of the microstructure with respect to the tangential direction, so
that the periodic “artificial” lattice can be introduced.

One of the main difficulties of modeling the blood perfusion is inherited form the struc-
ture of the vascular system. Although its features are specific for different types of tissues,
in general, the vasculature forms a complex hierarchical structure represented by a branch-
ing network. It consists of several levels distinguishable according to the vessel diameter.
On one hand, homogenization is well suited for describing periodic structures, so it does
not conform with the branching structures. On the other hand, the “ideal perfusion tree”
can be decomposed into several levels (hierarchies) which can be associated with layers
(generated by curved “mean” surfaces); in each of them the vascular network can be ap-
proximated by a (locally) periodic structures, where the “plane periodicity” is related to
the tangent planes of the generating surface. This simplified view of the real complex
system give rise to the idea of decomposing a 3D volume into layers with a given periodic
structure, see Fig. 12 (right), so that the homogenization procedure can be applied.

3.4.1 Problem formulation

Homogenization of the perfusion problem in a heterogeneous layer with double porosity
was described in [14]. In Fig. 12 (right) the layer is depicted schematically: Layer Ωδ =
Γ0×] − δ/2, +δ/2[ has thickness δ > 0, whereby Γ0 ⊂ R2 forms the mean surface. On
the “upper” and “lower” boundaries of Ωδ, which are denoted by Γδ+ and Γδ−, the fluid
exchange with the outer space is controlled by Neumann conditions. Domain Ωδ consists
of three disjoint sectors, the matrix Ωεδ

M and the two channels Ωεδ
A , Ωεδ

B , which are generated
as periodic lattices (with period ε). The double porosity in the matrix Ωεδ

M is introduced
using the standard scaling ansatz for the permeability, as described in preceding sections.
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Figure 12: Left: Brain tissue and micro-vessels. The microstructure changes with the
depth and can be decomposed into layers. Right: The three compartment heterogeneous
layer and the domain and boundary decomposition of the reference periodic cell Y .

Dilated formulation. For homogenization, the perfusion problem is transformed on
dilated domain with unit thickness; the weak formulation reads as follows: For given fluxes
gε± ∈ L2(Γ±), find pε ∈ H1(Ω)/R such that∑
D=A,B

∫
ΩεD

∇q ·K ε · ∇pε +

∫
ΩεM

∇q · ε2κ̄ε · ∇pε =
1

δ

∫
Γ+∪Γ−

g±εq dSx ∀q ∈ H1(Ω) . (30)

In order to obtain a limit of problem (30), the perfusion fluxes g±ε must be scaled
properly w.r.t. ε: we assume that the fluxes through the matrix interface Γ±εM are of the
order ε, whereas fluxes of the channel inlets and outlets are of the order 1. Moreover, local
net source of channels A and B must be specified. For this we introduce Gε

D(x′), x′ ∈ Γ0,
with D = A,B, to describe the fluid volume increase per one period ε in the channel
compartment D, and assume Gε

D ∼ ε, i.e. the local source produced in the channel A, or
B due to external inlets/outlets is proportional to the thickness δ = hε of the layer.

3.4.2 Model of the homogenized layer

The microscopic problems are solved in the reference cell Y decomposed into domains YA,
YB representing the channels A and B, respectively, and into the matrix YM featured by
the dual porosity. The channels have inlet / outlet branches which “intersect” the layer
faces Γ+, Γ− at “inlet / outlet surfaces” denoted as AkD and labeled by indices k ∈ JD.

In the limit, two “macroscopic” pressures p0,A and p0,B are obtained associated with
channels A and B. The dimension of the problem is reduced from 3D to 2D. The problem
describes the fluid redistribution in Γ0 due to the following phenomena:

• the macroscopic Darcy flow associated with pressure gradients ∂αp
0,A,∂αp

0,B and
corresponding in-plane permeabilities KAαβ, KBαβ of channels A,B, where α, β = 1, 2
are indices of the in-plane coordinates;
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p0,D macroscopic pressure in channel D
ĝ+, ĝ− inlet / outlet fluxes of the dual porosity through Γ+/−

g̃kD inlet / outlet fluxes of channel D through AkD
ḠD limit of the channel source flux Gε

D

range of indices: D = A,B, k ∈ JD, α, β = 1, 2

notation description corrector function related function
defining the coeff. in equations (31)

KDαβ in-plane permeability παD ∂βp
0,D

G perfusion coefficients ηD p0,A − p0,B

FD+,FD− matrix drainage coefficients γ+, γ− ĝ+, ĝ−

SD,kα channel branch drainage-saturation γkD g̃kA

Table 1: Variables and coefficients involved in the model of the homogenized perfused layer.

• the local fluid exchange between channels A and B through the dual porosity, where
the amount of the fluid is proportional to p0,A − p0,B with perfusion coefficient G;

• the external fluxes through the layer interfaces; in Table 1 we introduce the notation
for these homogenized fluxes (obtained as limits of g+,ε and g−,ε) and for associated
homogenized coefficients. The limit fluxes associated with channels D are g̃±D and
ḠD; it can be shown that g̃±D, since Ḡε

D ≈ ε.

Perfusion in the homogenized layer is governed by the following two equations, each
per one channel system (the summation convention applies in indices α, β)

− ∂

∂xα

[
KAαβ

∂

∂xβ
p0,A +

∑
k∈JA

SA,kα g̃kA

]
+ G

(
p0,A − p0,B

)
=
|∂Y ±A |
h

ḠA −FA+ĝ+ −FA−ĝ− in Γ0 ,

− ∂

∂xα

[
KBαβ

∂

∂xβ
p0,B +

∑
k∈JB

SB,kα g̃kB

]
+ G

(
p0,B − p0,A

)
=
|∂Y ±A |
h

ḠB −FB+ĝ+ −FB−ĝ− in Γ0 ,

(31)

Boundary ∂Γ0 is impermeable, so that fluxes ĝ+/−, ḠD and g̃kD are given data and must
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Figure 13: Left: Representative periodic cell of the layer containing two systems channels.
Right: illustration of the perfusion tree and a possible decomposition into layers.
.

satisfy the solvability conditions:∑
k∈JD

|AkD|g̃kD = 0, D = A,B , and
∑

D=A,B

∫
Γ0

(
1

h
ḠD + FD+ĝ+ + FD−ĝ−

)
= 0 . (32)

Model extension – perfusion tree. To summarize, let’s recall the need for describing
perfusion in tree-like structures which can be considered as periodic at any level of the
“tree”. In this context, the following properties are important.

• Multiple channels. Model (31) can be generalized for more mutually disjoint channels,
whereby the same techniques (also for the proofs of a priori estimates) can be used,
see [14] for details.

• Multiple layers. The main idea of using the homogenization-based modeling of the
“tree” is to decompose a 3D continuum occupying a thick heterogeneous layer into a
certain number of “thin” layers described by model (31). Thus, we obtain a coupled
system of 2D models describing the perfusion in the double porous medium.

• Co-lateral channels and blood perfusion. Model (31) has been justified only for the
case when “co-lateral” channels exist, i.e. domain Ωε

D, D = A,B is connected, which
yields positive definite tensor KD. For disconnected domains a rigorous proof is to be
completed, however, model (31) can be adapted for this situation and make a sense
when multiple coupled layers are considered. Let us remark that in some tissues,
co-lateral channels are not well developed (in brain), besides pathological cases.

The coupling conditions can be introduced in several ways, although we consider the
simplest and the most obvious case: the interface between the layers is just a section
through heterogeneous structure with well defined decomposition into the channels and
the matrix, see an illustration in Fig. 13, right.
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Figure 14: Solutions of the macroscopic problem: macroscopic pressures and fluxes in Γ0.

3.4.3 Numerical illustration

The homogenized single layer model is implemented in code SfePy , material coefficients
involved in (31) are evaluated for the microstructure of the 3D periodic cell including two
channels, see Fig. 13, left. The macroscopic problem is solved for given external fluxes, see
Tab. 1, the “macroscopic” solutions pA, pB on Γ0 are illustrated in Fig. 14, where the local
amount of the perfused fluid is G(pA−pB). Once the macroscopic pressures are computed,
at any point of Γ0, the fluid pressures and perfusion fluxes can be reconstructed at the
microscopic level, see an illustration in Fig. 15.

Literature used , related to Section 2 (selection): [AB92] [AB93] [ADH90] [ASBH90]
[BCP03] [Bio55] [CHBA94] [Cow01] [Cri91] [Cri97] [dB00] [dBCD98] [EP02] [FM03] [Fri00]
[HC95] [Hol00] [Hor97] [LNR10] [MC96] [MGL01] [Pes96] [SH98] [SM02] [SP80] [SV04]
[TIK98] [TOZN00]

4 Appended research papers and the author’s contri-

bution

The issues discussed briefly above were published during past five years in research papers
which are now listed with short comments. In these papers numerical computations were
performed in part by E. Rohan using the in-house Matlab code (developed exclusively by
him; below the abbreviation RHM is used). Contribution of Dr. R. Cimrman and Dr. V.
Lukeš is namely in the numerical computations using the SfePy software, or another in-
house developed codes (in Matlab; below the abbreviation LHM is used), see Section 1.1
of the Dissertation for details.

• Piezoelectricity. In [9] the homogenization of a general piezoelectric composite
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Figure 15: Perfusion reconstruction at the microscopic level — pressure pM(x′, ·) and
perfusion velocities wM(x′, ·) in matrix, as evaluated at two different macroscopic points
(elements).

with anisotropic elastic inclusions is described, numerical examples of 2D were com-
puted using RHM . In [21], the shape sensitivity of the homogenized coefficients
was developed, 2D numerical examples discussed (computation using RHM ). In
the context of the phononic crystals, the piezoelectric materials were considered in
[22], where the sensitivity analysis of the band gaps was developed, and in [3], where
the dispersion of guided waves was analyzed numerically using SfePy .

• Phononic crystals. Homogenization of the phononic crystals is reported in the
mathematical paper [1], where the author’s contribution is mainly related to numer-
ical examples computed using RHM code. In [24], some further modeling aspects
were discussed and the dispersion analysis was introduced also for guided waves.
The numerical studies performed there using RHM code (and using some exten-
sions made by F. Seifrt) indicate the range of applicability of the homogenized model
for the band gap prediction. Extensions of modeling the phononic effect in piezo-
electric materials were reported in [22] (sensitivity analysis) and in [3] (dispersion of
guided waves). More complex phononic structures involving 3 materials were con-
sidered in [4]. The sensitivity analysis for the band gap optimization problem was
developed in [23] for the “multimodal situations”, so that a robust (sub)gradient-
based algorithm can be used to solve the problem numerically; there the numerical
studies were performed by the author using RHM code.

• Acoustic transmission. Homogenization of the acoustic waves propagating through
thin layer containing the perforated obstacle was developed in [20], where also some
numerical illustrative examples were introduced (computations using LHM code).
The sensitivity analysis with respect to the shape of the periodic perforations was
reported in [18] for a general objective function. The numerical implementation is
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now being developed by V. Lukeš.

• Linear Biot type medium. In [5] we discuss homogenization of the incompressible
Biot continuum, where the dual porosity has the form of inclusions. In paper [25],
see Section 3.2.1, we describe homogenization of compressible double porous Biot
type medium with two compartments topology; the dual porosity forms a connected
domain (matrix). The numerical issues related to the FEM discretization and treat-
ment of the convolution integrals (fading memory) is discussed in [15] (numerical
implementation in the code SfePy ). This research was motivated by possible appli-
cations in bone tissue modeling. In order to describe some effects related to semiper-
meable interfaces between osteons (the structural units), we studied homogenization
of strongly heterogeneous FSPM with discontinuous pressure along microstructural
interfaces, see [6].

For modeling tissue perfusion, the three compartment model was developed. The
research was published in several proceedings during five years, cf. [12], however the
first complete paper appeared only recently [16].

• Large deforming FSPM. This topic has been motivated by structure of soft tis-
sues, namely by smooth muscles. A large part of the author’s habilitation thesis
[10] has been devoted to two-scale modeling of large deforming hyperelastic solids
with fluid inclusions. In paper [13], the theory was extended for modeling FSPM
with a single fluid inclusion per RPC (cell Y ). The homogenization is based on the
incremental formulation using the updated Lagrangian configuration. It has been
demonstrated how the microflow in the dual porosity leads to the apparent viscoelas-
ticity. Numerical examples were performed by the author using the RHM program
codes. In paper [17] the theory has been extended for description of material with
more fluid inclusions in the RPC. For modeling blood perfusion in large deforming
tissue, the three compartment model was developed [19].

• Perfused layers. In order to cope with blood flows associated with a complex
“perfusion tree” characterized by branching vessels, the model of perfusion in layered
structures was proposed, see Section 3.4. The theory is explained in [14].
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[19] E. Rohan and V. Lukeš. Homogenization of perfusion in large-deforming medium
using the updated lagrangian formulation. In Proceedings of the ECT 2010 conference.
Coburg-Sax Publ., 2010.
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