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1 Summary

The objective of the doctoral thesis is to present my contribution to the theory
of interfacial phase transitions. In this thesis, I will put my research into a
broader context, including a historical development of the field. To this end,
the thesis starts with a brief summary of the main properties of bulk phase
transitions, i.e. those occurring in macroscopically large and uniform systems.
Eventually, I will turn to a description of the phenomenology of surface phase
transitions in a planar geometry. These include wetting transitions and cap-
illary condensation; in both cases, an ambient (or bulk) fluid is considered to
be a low-density (gas) phase but a geometry restriction due to the presence of
the confining wall(s) and the corresponding wall-fluid interaction induce a for-
mation of a high-density liquid-like phase that would be metastable in bulk.
In order to link these and related phenomena with the microscopic proper-
ties of the matter, an appropriate statistical-mechanical tool is needed, which
I briefly introduce. The main part of the thesis is devoted to a description
of interfacial phenomena at non-planar model walls. This primely includes
wedge and groove filling transitions, wetting at periodically patterned walls
and bridging transitions between two spherical or cylindrical walls. The na-
ture of these transitions, criticality and the effect of thermal fluctuations are
discussed and a brief summary including perspective of the field is provided in
the final part of the thesis.
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2 Introduction

The presented dissertation belongs to the field of statistical physics of liq-
uids applied to phenomena, and phase transitions in particular, that occur
on surfaces where two bulk phases meet. In most cases, we will deal with
a solid-gas interface, at which, under certain circumstances, a liquid phase
nucleates. A theoretical basis of these wetting phenomena has been formed
already in nineteenth century and is associated with the classical works of T.
Young and P.-S. Laplace. Within their fully macroscopic treatment, the wet-
ting behaviour of solid walls, i.e. their affinity to adsorb liquid, is provided
by phenomenological quantities such as contact angle, surface tension etc. In
particular, it was shown that the contact angle θ of a sessile drop sitting on a
planar solid wall is given by balancing surface tensions at the wall-liquid-gas
coexisting line. However, it was not before the 70’s of the last century, when it
turned out that a change from a partial wetting state (θ > 0) into a complete
wetting state (θ = 0) at bulk two-phase coexistence pressure (or, equivalently,
chemical potential) is an example of a surface phase transition. From a statis-
tical mechanical viewpoint this means that the (surface) free energy of such a
system (which can be linked directly with the contact angle θ) exhibits singu-
larity at this thermodynamic point. Interestingly, the very beginning of this
new field of wetting transitions was accompanied by a controversy about the
order of the transition. While the Cahn model predicted that the transition
is first-order [1, 2], such that the slope of the contact angle changes abruptly
and the latent heat is released, a more microscopic Sullivan’s model [3, 4, 5]
showed that the transition is continuous (the singular behaviour of the free
energy is then shifted to higher derivatives). Using scaling methods [6] and a
fully microscopic classical density functional theory (DFT) [7] the debate was
resolved in early 80’s with a compromise: the order of the transition depends
on the character of the microscopic (intermolecular) forces and both scenar-
ios are possible, although the first-order wetting transitions are much more
abundant in nature.
After three decades of an intense theoretical scrutiny it may be concluded

that wetting phenomena at planar solid walls are sufficiently well understood
[8]; this includes a description of possible phase transitions and corresponding
fluctuating regimes, their nature and a connection with microscopic properties
of the matter. More recently, however, fluid condensation at structured or
nano-patterned surfaces attracted a considerable interest. There are at least
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two reasons for that. Firstly, the wall geometry can have a dramatic impact
on the fluid phase behaviour; it reveals that even a microscopic corrugation
and roughness of the wall may change location and order of the phase transi-
tions or even induce completely new phenomena that are absent in the planar
case. Clearly, on a microscopic scale any solid surface is rough and thus our
knowledge of surface phenomena on perfectly smooth walls should be thought
only as a first approximation towards understanding of fluid adsorption on real
surfaces. Secondly, with advanced techniques in nanolitography [9, 10] that
enable modification of the shape of solid surfaces even on a molecular scale, the
understanding of fluid phase behaviour near such modified surfaces becomes
important in view of modern technologies such as micro- and nanofluidics [11].
A description of fluid phase behaviour near structured surfaces turned to

be an extremely complex and non-trivial task. One obvious reason for this is
that a non-planar geometry breaks symmetry of the system along at least one
dimension which makes the analysis much more complicated compared to the
planar case. Another specific aspect of these systems is that the underlying
phase behaviour is very sensitive to the geometric details of the wall. For ex-
ample, adsorption at sinusoidally shaped walls was shown to exhibit so called
unbending transition [12]; in this case, the shape of the liquid-gas interface,
which forms above the liquid film intruding between the wall and the ambi-
ent gas, follows initially the shape of the wall and grows continuously as the
pressure is increased. However, at some point the interface changes its shape
abruptly and flattens; this is an example of a geometry-induced (first-order)
phase transition. If, in contrast, the shape of the wall is “saw-tooth”, there is
no such an unbending transition and the sinusoidal undulation of the liquid-
gas interface persists, although its amplitude decreases continuously with the
film height.
A general task for a theorist is to address several questions. First of all, we

wish to know what kind of (surface) phase transitions such a given model wall
may induce and under which conditions. Furthermore, we want to know what
is the nature of the transitions and if continuous, to quantify the divergence
of the pertinent quantities by determining the associated critical exponents.
The values of the critical exponents can be both universal or may depend on
the character of the microscopic interactions; in the latter case, obviously, a
microscopic approach needs to be applied. It is also important to show if/that
there exists “hidden symmetries” between various apparently very distinct
interfacial transitions, but which we can describe in a formally same way with
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identical values of critical exponents.
In the remainder of the thesis I will start with a brief overview of the bulk

critical phenomena (section 2) which is followed by a concise introduction to
the theory of wetting transitions and capillary condensation (section 3), i.e.
two fundamental examples of surface phase transitions in a planar geometry.
In section 4 I will mention some of the main theoretical methods which I
have used in works that are discussed in section 5. These are the interfacial
phenomena in non-planar confining geometries and the corresponding list of
publications concludes the thesis.

3 Bulk Critical Phenomena

Bulk phase transitions and critical phenomena occur in macroscopic systems
where the matter is not affected by the presence of external fields and bound-
aries, and thus the distribution of the matter is uniform on average. In figure
1 a typical sketch of the phase diagram in the pressure-temperature projection
is shown; the lines represent phase boundaries where two distinct phases can
coexist. By crossing the phase boundaries, the system undergoes first-order
phase transition during which its macroscopic properties change abruptly. The
liquid-vapour line terminates at the critical point beyond which no distinction
between the two phases can be made. This means that the coexistence line
can be bypassed in a path connecting two distinct fluid phases. This contrasts
with the solid-liquid and solid-vapour transitions since in these cases the two
phases possess different symmetry. The phenomena that occur near the critical
point are called critical phenomena and are characterised by strong fluctua-
tion effects and by a power-law divergence of certain quantities which can be
quantified by critical exponents. Generally, two phases that occur near the
critical point are distinguished by the order parameter which is typically zero
in one (less ordered) phase and non-zero in another phase. In particular, for
the liquid-vapour system the order parameter is the density difference between
the two phases, ρL−ρV , so that its value is zero above the critical temperature
Tc and non-zero below. By defining the reduced temperature t = (Tc−T )/Tc,
the critical behaviour near the liquid-vapour critical point is characterized by
the following relations and critical exponents:
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Figure 1: Temperature-pressure phase diagram of a simple substance. All the
transitions are discontinuous except at the critical point (C).

• Specific heat: Cv ∝ |t|−α as t→ 0 at ρ = ρc;

• Density difference: ρL − ρV ∝ tβ as t→ 0;

• Isothermal compressibility: χT ∝ |t|−γ as t→ 0;

• Critical isotherm: ρL − ρV ∝ |P − Pc|1/δ as P → Pc at t = 0;

• Correlation length: ξ ∝ |t|−ν as t→ 0;

• Density-density correlation function: G(r) ∝ 1
rd−2+η at t = 0.

The concept of the critical point was introduced in 1869 when Andrews
presented his experimental results on carbon dioxide [13]. Soon after, van der
Waals formulated first microscopic theory for fluid phase behaviour in which
the critical point was included [14]. Almost simultaneously, the critical point1

emerged also in the theory of ferromagnets proposed by Weiss. These advances
revealed a very interesting similarity between fluids and magnets; when the
pressure is taken as the analogue of magnetic field H and the pressure dif-
ference as the analogue of magnetization M , the two theories exhibit notably
similar critical behaviour. Even more remarkably, van der Waals and Weiss
theories turned out to provide an identical set of critical exponents. The close
1For magnets, the critical point or critical temperature is often termed as Currie point

and Currie temperature, respectively.
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analogy between the two theories, describing entirely disparate systems, was
eventually explained by the Landau theory [15] of continuous phase transitions.
The Landau theory, based solely on a few simple phenomenological assump-
tions, proved to be extraordinary useful. In fact, the Landau theory became
a synonym to all mean-field (MF) theories, which do not account properly
(or neglect at all) for long-range fluctuations, since any MF theory is only a
specific case of the general Landau theory. However, the effect of fluctuations
near the critical point is generally important, hence the MF theories are not
exact and the so called classical critical exponents which they predict do not
match with real experiments.
The behaviour of equilibrium systems with many degrees of freedom is

most conveniently described by means of statistical mechanics. Formally, the
general strategy of the statistical-mechanical treatment is very straightforward:
all, what is needed, is to evaluate the partition function

Z = Tre−βH , (1)

whereH is the Hamiltonian governing the system and β = 1/kBT is the inverse
temperature with kB being the Boltzmann constant. Taking derivatives of Z,
all thermodynamic properties of the system and its fluctuation behaviour can
be determined. However, when it comes to continuous phase transitions, it
reveals that their behaviour are largely insensitive to the details of the model
and their nature, characterised by the critical exponents, are same even for
a large number of diverse systems that constitute a given universality class.
Hence, even very simple,“minimal” models, such as the famous Ising model,
can be used to describe critical behaviour of many systems. The Ising model
is defined by the Hamiltonian [16]

H = −J
∑
〈ij〉

SiSj −H
∑

i

Si , (2)

where J is the interaction parameter and where the degrees of freedom Si = ±1
are assumed to interact only with their nearest-neighbours. An exact solution
of the Ising model in two dimensions by L. Onsager (1944) [17] showed that
the mean-field (Landau-type) theories provide only approximative values of
the critical exponents and cannot be considered as fully satisfactory.
The fail of the “classical era” of the theory of critical phenomena induced a

great challenge for a formulation of an alternative theory which would properly
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incorporate an impact of thermal fluctuations. This effort proved to be highly
non-trivial, as it occurred that no extension of the previous methods is satis-
factory but rather a completely new approach is needed. Such a theory should
e.g. explain, why the critical exponents are not independent but are linked
by certain identities. As first shown by Widom (1965) [18], the existence of
the exponent relations can be explained by assuming scaling properties of the
free energy near the critical point. This Widom’s hypothesis also explains why
binodals of different systems collapse to a single curve near the critical tem-
perature when expressed in appropriately re-scaled units. The origin of the
scaling has been heuristically explained by Kadanoff (1966) [19] who intro-
duced the block-spin idea that have been further elaborated by Wilson (1971)
who formulated the famous renormalization-group (RG) theory [20, 21, 22].
The RG theory proved to be a method by which one can estimate the values
of the critical exponents in a systematic way. Moreover, it explains the origin
of scaling and universality, and reveals the importance of the system dimen-
sionality d, the critical exponents are generally dependent on. In particular,
every critical system possesses the upper critical dimension, d∗, such that the
effect of fluctuations is not essential for d > d∗ where the mean-field theories
thus become exact.

4 Interfacial Phase Transitions: A Planar Ge-
ometry

4.1 Wetting phenomena

Consider a planar wall2 onto which some amount of liquid is poured. From a
macroscopic viewpoint the wetting properties of the wall can be characterised
by the contact angle θ at which the liquid drop meets the wall. If θ > 0,
the system is in a partial wetting regime and the liquid forms a hemispherical
cap3. Balancing the net force per unit length acting along the boundary line
between the three phases, the equilibrium contact angle is given by Young’s
2The wall is typically assumed to be of a solid material although this assumption is not

necessary at this point.
3If not stated otherwise, we will implicitly consider only hydrophilic walls, such that

θ < π/2. In the opposite case, the wall is called to be dried (i.e., wetted by the vapour)
which is just a reverse phenomenon to wetting.
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equation
γwg = γwl + γ cos θ , (3)

in terms of the tensions of the wall-vapor, wall-liquid and liquid-vapour in-
terfaces. If adsorption properties of the wall are strong enough, the system
can exhibit wetting transition at a wetting temperature Tw at which the wall
surface becomes completely wet and θ = 0. Eq. (3) then becomes Antonow’s
equation:

γwg = γwl + γ , (4)

Figure 2: Phase diagrams of a first order (left) and a continuous (right) wetting
transition. Also shown are representative thermodynamic paths on diagrams
below. The difference µ−µ0 measures the departure in the chemical potential
from bulk two-phase coexistence and the adsorption Γ is proportional to the
liquid film thickness `π.

Alternatively, the wetting transition can be viewed as an intrusion of a
liquid layer into a wall-vapour interface [23, 24, 25]. The partial wetting regime
corresponds to a finite value of the liquid film thickness `π or, equivalently, the
surface adsorption Γ. The film thickness (or adsorption) serves as the natural
order parameter for the wetting transition, at which `π (or Γ) diverges (in the
absence of gravity). There are two possible ways how the divergence can be
realized:
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• The wetting temperature is approached from below, T → T−
w , along

the bulk liquid-vapour coexistence line, such that the chemical potential
µ = µ0(T ), where µ0(T ) is the saturation chemical potential at a given
temperature. This transition can be either discontinuous, i.e. first-order
wetting (figure 2, left panel, path No. 4) or continuous – usually called
critical wetting (figure 2, right panel, path No. 3). Clearly, the free
energy is non-analytic at Tw in both cases and its singular part which is
defined as

fsing = γwg − (γwl + γ) (5)

vanishes at Tw according to

fsing ∼ t2−αs , t > 0 , (6)

where t ≡ (Tw − T )/Tw. For further purposes, it is useful to note that
by combining (3) and (5) we obtain

fsing ≈ −γθ
2

2
(7)

near Tw where the contact angle is small.

The value of the critical exponent α determines the order of the transi-
tion. From Eqs. (3) and (6) it follows that

1− cos θ ∼ t2−αs , t > 0 . (8)

Now, the derivative of the contact angle with respect to the temperature,

d cos θ
dT

∼ t1−αs , (9)

must be continuous at Tw for critical wetting (no latent heat) and there-
fore αs < 1. For first-order wetting, there is a latent heat at the tran-
sition, cos θ is therefore discontinuous at Tw and αs = 1. For critical
wetting we also define the critical exponent βs which characterises the
divergence of the film thickness (or adsorption) as T approaches Tw:

`π ∼ t−βs . (10)
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• The bulk liquid-vapour coexistence is approached from below at a fixed
temperature Tw < T < Tc (the lines Nos. 2 and 3 in the left panel
and the line No. 2 in the right panel of figure 2). Within this process,
the thickness of the liquid layer diverge as µ → µ−0 according to the
power-law

`π(δµ) = δµ−βco
s , (11)

where δµ = µ0−µ. This continuous divergence of the liquid film is called
complete wetting. For the singular part of the free energy, we have by
analogy with Eq. (6):

fsing ∼ δµ2−αco
s , δµ > 0 . (12)

For the first-order wetting transitions, the singularity in the surface free
energy at Tw extends above Tw and below µ0 to a pre-wetting line which
is the locus of coexistence between two distinct phases with thin and
thicker wetting layers. This line terminates at its own critical tem-
perature Tsc and approaches the coexistence line tangentially at Tw as
δµ ∼ (T − Tw)

3
2 .

In general, the surface critical exponents depend on the range of the fluid-
fluid and wall-fluid interactions. Our main focus will be on models where
the interaction between molecules is long-ranged (decaying as a power-law
at infinity), with a particular emphasis on the most relevant case where the
particles interact via van der Waals (dispersion) forces.
Wetting phenomena (in d dimensions) can be studied using the interfacial

Hamiltonian model in terms of the height `(x) of the liquid-gas interface (i.e.,
the local wetting film thickness)

Hπ[`] =
∫

dx
[γ
2
(∇`)2 +W (`)

]
, (13)

where x denotes the (d− 1) coordinates parallel to the wall. The first term in
the integral is the energy cost of an undulation of the interface due to thermal
fluctuations that are assumed to be small (|∇`| � 1). The second term, W (`),
represents effective interaction of the interface with the wall and is called
binding potential. For the long range interactions, the binding potential has
the asymptotic form:

W (`) =
a(T )
`p

+
b(T )
`q

+ · · · ; ` > 0 , (14)
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where p = 2 and q = 3 for (non-retarded) van der Waals forces in three dimen-
sions4. This binding potential is appropriate as far as two-phase coexistence
is concerned, i.e, for µ = µ0; this is the case of first-order or critical wetting.
For complete wetting, we have µ < µ0, and the energy cost for the presence of
the metastable liquid must also be included:

W (`) = δµ(ρl − ρg)`+
a(T )
`p

+ · · · ; ` > 0 . (15)

If the interfacial fluctuations are neglected, `(x) = const, and the equi-
librium wetting configuration is given simply by minimising the binding po-
tential. The system is wet if the minimum corresponds to ` infinite which
requires a(T ) > 0. There are two mechanisms by which this global minimum
can shift to a finite value of `. The first mechanism can occur as a(T ) changes
its sign with b(T ) positive. If a(T ) < 0, the binding potential approaches zero
asymptotically from below, which means that the minimum is at finite value
of ` ∼ a−1; the wall is not wet. However, as a(T ) → 0, the film thickness
grows continuously and eventually diverges at Tw for which a(Tw) = 0 and
b(Tw) > 0. Clearly, this mechanism corresponds to critical wetting. Note that
as a(T ) changes its sign at the wetting temperature, a ∼ t. From this it fol-
lows that βs = 1 and upon substituting into (14) and (12) we get αs = −1
for van der Waals forces.5 The second mechanism is realized if b(T ) < 0 (or
if the coefficient of a higher-order term in the expansion (14) is negative) and
a(T ) > 0, in which case the binding potential exhibits two minima at ` finite
and ` infinite. In this case, Tw corresponds to the temperature below which fi-
nite ` minimum becomes the global minimum. This is the case of a first-order
wetting. This mechanism is pertinent for systems in which the only forces
that are long range are those between fluid and wall atoms; in this case a(T )
remains always positive. For complete wetting, the term linear in ` prevents
from unbinding of the interface for any positive value of δµ = µ0 − µ. The
wall thus becomes completely wet only in the µ→ µ0 limit with the associated
critical exponents αco

s = 4/3 and βco
s = 1/3 for van der Waals forces.6 Note

that all terms beyond the `−p order are irrelevant for complete wetting.
The MF analysis can be complemented by the OZ approximation to obtain

further critical exponents related with the structure of the interface. The OZ
4The coefficient a(T ) is often termed the Hamaker constant.
5More generally: αs = (2− 2p)/(q − p) and βs = 1/(q − p).
6More generally: αco

s = (p + 2)/(p + 1) and βco
s = 1/(p + 1).
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theory corresponds to the functional Taylor expansion of Hπ[`] up to second
order in fluctuations δ`(x) = `(x)− `π around the mean value of the interface
height 〈`〉 = `π. From this it follows that the transverse correlation length,
defined by the OZ theory as

γξ−2
‖ ≡ d2W (`)

d`2

∣∣∣∣
`=`π

(16)

behaves as
ξ‖ ∼ t−ν‖ , (critical wetting) (17)

with ν‖ = 5/2 for critical wetting and

ξ‖ ∼ δµ−νco
‖ , (complete wetting) (18)

with νco
‖ = 2/3 for complete wetting.7

The MF theory is no longer correct when the fluctuation effects become
important. The upper critical dimension where the MF theory ceases to hold,
can be determined using the Ginzburg criterion. The contribution of the fluc-
tuations to the surface free energy can be estimated as

ff
s ≈ kBT/ξ

d−1
‖ ∼ t(d−1)ν‖ . (19)

If compared with (6), we obtain the hyper-scaling relation

2− αs = (d− 1)ν‖ (20)

and, similarly, for complete wetting:

2− αco
s = (d− 1)νco

‖ . (21)

The hyper-scaling relations are only valid for the MF critical exponents for
d = d∗ and therefore

d∗ =
3q + 2
q + 2

(critical wetting) (22)

and

d∗ =
3p+ 2
p+ 2

(complete wetting) . (23)

7More generally: ν‖ = (q + 2)/(2(q − p)) and νco
‖ = (p + 2)/(2p + 2).
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For van der Waals forces, d∗ = 11/5 for critical wetting and d∗ = 2 for complete
wetting. These results are important because they tell us that the MF theory
of wetting is exact in d = 3 for long-range forces.
Although the MF theory of wetting is exact in the most relevant case of a

three-dimensional system with long-range forces,8 it is nevertheless desirable
to account for the effect of fluctuations in systems of lower space dimensions.
As we will see later on, this may occur to be very useful for a description
of other interfacial phenomena that can be effectively mapped onto wetting
phenomena at reduced dimensions. To properly include the fluctuations, exact
transfer-matrix or approximate RG techniques have often been employed but
much about their influence can be learnt from the simple arguments that I will
demonstrate for dimension d = 2.
Fluctuations in ` decays in a distance of ξ‖ and thus for the first term in

Eq. (13) we have
γ

2
(∇`)2 ∼ `2

ξ2‖
. (24)

The fluctuations become important when ` ∼ ξ⊥ where

ξ⊥ =
√
〈`(x)2〉 − `2π (25)

is the perpendicular correlation length or roughness. The transverse and cor-
relation lengths are related through the wandering exponent as ξ⊥ = ξζ , so
that

γ

2
(∇`)2 ∼ `2

ξ2‖
∼ `−τ , (26)

with τ = 2/ζ − 2. Adding this interaction term due to fluctuations to the
binding potential with long-range forces (14), we obtain an effective potential:

Weff(`) =
a(T )
`p

+
b(T )
`q

+
c(T )
`τ

; ` > 0 . (27)

Thus beside the two first energy terms that describe a direct interaction be-
tween the interface and the wall, we also have a competing term which includes
an entropy loss due to the wall presence accounting for the restricted number
8For systems with short-range forces d∗ = 3 for both critical and complete wetting. In

this case, the critical singularities are αs = 0, βs = 0(ln) and ν‖ = 1 and fco
s = δµ ln δµ,

βco
s = 0(ln) and νco

‖ = 1/2.
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of possible fluctuations of a bound state compared to an unbound state. The
last term in (27)) is therefore repulsive, hence c(T ) > 0 and it can be shown
that τ = 2 for d = 2. Depending on the values of p and q relative to τ , we
obtain three scaling regimes for critical wetting [26]:

1. τ > q: Mean-field regime. Since the critical exponents for critical wetting
are given by the first two terms in the binding potential, the fluctuation
term has no effect and the MF theory is exact in this regime.

2. p < τ < q: Weak-fluctuation regime. Now the fluctuation term is second
largest and the critical exponents (that are now dimension-dependent)
are not correctly predicted by the MF theory. However, the critical tem-
perature which is given by the leading order term, is still given correctly
by the MF theory and the critical exponents can be be obtained from
the MF theory by replacing q → τ ; in particular, βs = 1/(τ − p).

3. τ < p < q: Strong-fluctuation regime. In this regime, the fluctuation
term is dominating and even the location of the wetting temperature is
not correctly given by MF theory. For d = 2 when ` is a function of
a single coordinate, the transfer-matrix method can be employed which
transforms the statistical mechanical problem to the eigenvalue problem
for the Schrödinger equation:(

1
γβ2

d
d`2

+W (`)
)
ψn(`) = Enψn(`) , (28)

to determine P (z) = |ψ0(z)|2, the probability to find the interface at a
height z.

For complete wetting, the situation is simpler, since only the leading order
term in the binding potential is important for the critical exponents. This
can be viewed from the fact that the binding potential (15) can be formally
obtained from (14) by taking a = δµ and p = −1. As the leading order
term is thus always lower than τ , there is no strong-fluctuation regime for
complete wetting. For a fixed dimension d < 3, there is a marginal value
p∗ = 2(d− 2)/(3− d) of the exponent p, such that:

1. p < p∗: Mean-field regime. The MF theory is valid and the critical
behaviour is determined by minimization of W (`).
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2. p > p∗: Weak-fluctuation regime. For systems with shorter-range forces
than those corresponding to p∗ fluctuation effects dominate. According
to the RG theory, βco

s = (3− d)/(d+ 2).

4.2 Capillary condensation

Consider a pair of parallel infinite planes that are a distance L apart and which
is embedded inside the bulk gas reservoir chemical potential µ (pressure p).
We assume that the temperature of the system is T < Tc, so that the bulk
system experiences first-order liquid-vapour phase transition at the chemical
potential µ0(T ). In contrast, the confined gas exhibits first-order condensation
transition at a shifted value of µcc(T ;L) which is macroscopically given by the
classical Kelvin equation

µcc(T ;L) = µ0(T )− 2(γwg − γwl)
L∆ρ

(29)

where ∆ρ = ρl − ρg is the difference between the particle densities of the bulk
liquid and gas coexisting phases. We will further assume that γwg > γwl, i.e.
that the walls favour liquid and thus on using of (3)

µcc(T ;L) = µ0(T )− 2γ cos θ
L∆ρ

(30)

with cos θ > 0, implying µcc < µ0. Such a proces, within which a low-density
gas-like state changes abruptly into a dense liquid-like state, is called capillary
condensation. The opposite case, capillary evaporation, occurs when the walls
favour gas and then the opposite inequalities apply.
There are two ways how the Kelvin equation can be derived. Within the

thermodynamic treatment, and for large L, we can write for the grand potential
per unit area of the low-density state at the pressure p and chemical potential
µ

ωg ≈ −pL+ γwg (31)

and for the liquid-like state

ωl ≈ −p†L+ γwl (32)

where p† is the pressure of the metastable bulk liquid at the same chemical
potential µ. By balancing ωg and ωl and using 3, a first-order condensation
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occurs at the pressure p satisfying

p− p† =
2γ cos θ
L

. (33)

Finally, assuming that the undersaturation δµ = µ0 − µcc at which the tran-
sition occurs is small, we can expand both p and p† around the saturation
pressure to first order leading to p − p† ≈ δµ∆ρ, which upon substituting to
(33) reproduces (30).
Alternatively, the macroscopic Kelvin equation can be derived using geo-

metric arguments. Right at the capillary condensation µcc the two low-density
and high-density states may coexist. The presence of the liquid-like state,
which is metastable in bulk, necessitates the presence of a meniscus at the
“liquid-gas” interface. In the macroscopic limit L → ∞, the meniscus must
satisfy two conditions: i) it meets the walls at Young’s contact angle θ and
ii) its radius of curvature is the Laplace radius R = γ/(p − p†) ≈ γ/(δµ∆ρ).
Since for the slit pore L = 2R, we obtain (30) again.
As we could see, both derivations assume the macroscopic limit L → ∞

and it is only in this limit when the Kelvin equation (30) is reliable. A more
microscopic approach which takes into account also a singular part of the
interfacial tensions, leads to a more accurate prediction, when the walls are
completely wet (θ = 0). In this case, the wetting layers form at the walls, the
width of which grow as `π ∼ (µ0 − µ)−1/3 in the limit of L → ∞ for walls
exerting van der Waals forces. The presence of such films in the slit leads to
a modified Kelvin equation valid for large L:

µcc(T ;L) = µ0(T )− 2γ
(L− 3`π)∆ρ

(34)

That L should be replaced by L − 3`π rather than L − 2`π, as would be
suggested by a naive balancing of bulk and surface energies, was recognized
first by Derjaguin [27] in 1940 and attests to the importance of long-ranged van
der Waals forces in wetting phenomena. Only for exponential or finite-ranged
forces is L− 2`π appropriate [27, 28].
The Kelvin equation, either the original or the modified, describes the

finite-size shift of the vapour-liquid transition due to the presence of the con-
fining walls. However, they do not tell everything about the nature of the
transition. For example, reducing the slit width L leads to criticality, at which
the transition disappears. For a fixed slit width L, the transition disappears
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when the bulk correlation length ξ ∼ L. A simple comparison of the two
length-scales leads to finite-size scaling law which exact in the limit of L→∞:

Tc − Tc(L) ∼ L−
1
ν , (35)

where ν is the correlation length critical exponent of bulk three-dimensional
fluid [29, 30]. Criticality in the confined fluid lies in the two-dimensional Ising
universality class. Therefore, on a a critical isotherm, the adsorption should
take the form

Γ ∼ |µc − µ|1/δ(2D)
(36)

with δ(2D) = 15. This gives rise to a much faster divergence of (∂Γ/∂µ) than
the mean-filed result which has δ = 3. Moreover, the jump in adsorption
should vanish as ∆Γ ∼ (Tc(L) − T )β(2D)

with β(2D) = 1/8, rather than with
the mean-field value β = 1

2 or the three-dimensional value β ≈ 0.32 [31].

Figure 3: Schematic phase diagram of the first-order capillary condensation
transition. The transition disappears at the critical temperature Tc(L) which
lies below the bulk critical temperature Tc and the shift is approximately given
by (35). Also shown is the wetting temperature Tw which, however, does not
have a considerable relevance for the transition except that for T > Tw wetting
layers form at the walls; in this case the modified Kelvin equation (34) is much
more accurate than the original one (30).

The capillary condensation phase diagram in the plane (T, δµ) where δµ =
µ0 − µ is shown in Fig. 3. Not shown in this phase diagram is the prewetting
first-order transition which can occur and compete with capillary condensa-
tion. However, this only occurs for very large values of the walls separations.
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5 Classical Density Functional Theory

The interfacial model introduced in the previous section is a well established
theoretical tool which provides us, often analytically, with a description of
interfacial phenomena in terms of the interface height `(x), a natural order
parameter for unbinding processes such as the wetting and related transitions.
For more intricate geometries and/or in cases when the inhomogeneous fluid
structure due to a strong wall-fluid interaction or finite-size effects becomes
important, the mesoscopic picture provided by the interfacial model may occur
less satisfactory and the problem may call for more microscopic approaches
based on many-body molecular Hamiltonians.
A very powerful approach to microscopic structure of inhomogeneous fluids

is a density functional theory (DFT). The theory was originally developed as a
quantum mechanical treatment for the ground state of inhomogeneous many-
electron systems in 1960’s [32, 33] and later re-formulated by Evans [34] for
inhomogeneous classical fluids within a framework of statistical mechanics.
Both DFT’s have established as standard theoretical tools in their fields. In
what follows, we will deal with the classical (statistical-mechanical) version
only.
A fluid is said to be inhomogeneous if one-body density (or density distri-

bution) ρ(r) is spatially varying, as in the case of systems with confining walls.
The one-body density is defined as

ρ(r) =

〈
N∑

i=1

δ(r− ri)

〉
(37)

where N is the number of particles and 〈· · ·〉 denotes the ensemble average.
Within DFT the effect of the walls is included via the external field V (r) the
walls exert. The DFT formalism establishes that for a given chemical poten-
tial µ and temperature T (β = 1/kBT ) and given inter-particle interaction
u(ri − rj) there is a unique intrinsic free energy functional F [ρ] of the density
distribution ρ(r) (and not of V (r)) and so is of the same form for any external
potential. The equilibrium density distribution for the system in a given ex-
ternal field V (r) is then obtained by minimizing the grand potential functional
constructed from the Legendre transform of F [ρ]:

Ω[ρ] = F [ρ] +
∫

drρ(r)(V (r)− µ) , (38)
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with respect to all possible functions ρ(r). This leads to the Euler-Lagrange
equation:

δΩ[ρ]
δρ(r)

∣∣∣∣
ρ(r)=ρeq(r)

= 0 ⇔ µ =
δF [ρ]
δρ(r)

+ V (r) (39)

Moreover, for the equilibrium density profile ρ(r) = ρeq(r) the grand potential
functional reduces to the thermodynamic grand potential Ω.
An important feature of DFT is that it satisfies a number of the so called

sum rules, i.e., the exact statistical mechanical relations between correlation
functions and macroscopic thermodynamic quantities [35], which makes the
direct link between microscopic correlations and physical properties of the
macroscopic system. Particularly useful is the pressure sum rule relating the
bulk pressure with the external field of the wall

βp =
∫

dzρ(z)
d
dz

exp [−βV (z)] (40)

and the Gibbs adsorption theorem which connects the excess adsorption with
the surface tension:

Γ ≡
∫

dz(ρ(z)− ρb) = −
(

dγ
dµ

)
T

, (41)

where ρb is the bulk density. In both cases, a planar symmetry of the wall-fluid
interface was assumed but a generalization of the theorems to other geometrises
is straightforward. In DFT, these sum rules are also often used as a check of
numerical consistency.
Thus far, the DFT formalism has been exact and thus the exact deter-

mination of Ω[ρ] is equivalent to the full evaluation of the grand partition
function:

ZµV T =
∑
N

eβµN

N !Λ3N

∫
ΠN

i=1drie
−βUN , (42)

where
UN (r1, r2, . . . , rN ) = Φ(r1, r2, . . . , rN ) +

∑
i

V (ri) , (43)

is the total potential of N particles including both the inter-particle interaction
Φ and the external field V and Λ is the thermal de Broglie wavelength. This
is, therefore, not surprising that there are no free energy functionals known

19



exactly except for the toy one-dimensional models. However, the strength of
DFT is that on searching a suitable approximation for F [ρ] the well estab-
lished methods from statistical physics of homogeneous fluids can be used as
a guide, which makes the task much easier compared to a direct treatment of
the partition function. Also note that the density distribution can be much
more easily obtained from Eq. (39) than from Eq. (37).
In modern approaches, it is common to develop DFT approximations for

particular classes of fluid models (rather than constructing generic approxima-
tions). Typically, the total free energy functional is split into an ideal part

Fid[ρ] =
1
β

∫
drρ(r)

[
ln(ρ(r)Λ3)− 1

]
(44)

which is known exactly, and an excess part Fex[ρ] which accounts for the
interactions between the particles. For simple fluids the inter-particle potential
Φ is pairwise additive and the interaction between the particles only depends
on the distance between their centers. This is, e.g., the case of the well-known
Lennard-Jones potential

uLJ = 4ε
[(σ

r

)12

−
(σ
r

)6
]
, (45)

where the parameters ε and σ are then often used as the energy and length
units.
In the spirit of van der Waals theory, the excess term of the free energy is

treated in a perturbative manner, and is separated into a contribution mod-
elling the repulsive hard-sphere (HS) core and a contribution from the attrac-
tive part ua(r) of the fluid-fluid intermolecular potential. This is treated most
commonly in mean-field fashion:

Fex[ρ] = FHS[ρ] +
1
2

∫ ∫
drdr′ρ(r)ρ(r′)ua(|r− r′|) , (46)

where FHS[ρ] is the excess free energy functional of the hard-sphere fluid, with
an appropriately chosen diameter.
Over the last three decades a number of approximative functionals for

FHS[ρ] has been proposed. Arguably the most successful one, however, is the
one produced by Rosenfeld within his Fundamental Measure Theory (FMT)
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[36]. The theory is based on an assumption that the HS free energy functional
can be expressed in the form

Fhs[ρ] =
1
β

∫
drΦ({nα}) . (47)

in terms of a set of weighted densities

nα(r) =
∫

dr′ρ(r′)ωα(r− r′) . (48)

Here, the six weight functions are given by

ω3(r) = Θ(R− |r|) , (49)

ω2(r) = δ(R− |r|) , ω2(r) =
r
r
δ(R− |r|) , (50)

ω1(r) = δ(R− |r|) , ω1(r) =
r
r
δ(R− |r|) , (51)

ω0(r) = δ(R− |r|) , (52)

and the function Φ({nα}) can be determined from dimensional analysis and
from requirements that the low- and high-density limits are obeyed exactly,
which leads to

Φ = −n0 ln(1− n3) +
n1n2 − n1 · n2

1− n3
+
n3

2 − 3n2n1 · n2

24π(1− n3)2
. (53)

In the limit of homogeneous fluid, this result is equivalent to the compressibility
Percus-Yevick equation of state [37], although modified FMT versions of even
more accurate underlying equation of state are now available. Importantly,
the FMT functional satisfies the sum rules, Eqs. (40) and (41) (in contrast to
some alternative approximative free energy functionals).

6 Interfacial Phase Transitions: A Non-Planar
Geometry

This section is devoted to interfacial phenomena that occur in systems exhibit-
ing other than a planar symmetry. It turns out that the effect of a substrate
geometry is enormous and gives rise to a number of new, geometry-driven
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phenomena that, of course, are absent in the simple models described in the
previous section. Although relatively new, an attempt to provide a comprehen-
sive review of this subject would be rather challenging in view of its growing
popularity in the last few years. Instead, this section illustrates my contribu-
tion to this field and thus focuses on models I have been dealing with over the
last couple of years (since 2011).

6.1 Linear wedges and edges

Figure 4: Schematic illustration of the meniscus height `(x) in a linear wedge
with an opening angle ψ (tilt angle α = (π− ψ)/2) and `w = `(0) the equilib-
rium midpoint height measured above the apex.

A simple but important example of a non-planar substrate is a wedge
geometry formed by two identical infinite planar walls that meet at an opening
angle ψ = π− 2α where α is the tilt angle with respect to the (say) horizontal
axis. The wedge geometry may be thought as being a missing link between
the cases described in the previous section of a planar wall (α = 0) and a
capillary-slit (α = π/2) and shows a phase transition which is distinct from
both wetting and capillary condensation.
Suppose the wedge is in contact with a bulk vapour phase at temperature

T < Tc and chemical potential µ. Macroscopic arguments [38] dictate that at
bulk coexistence, µ = µ0, the wedge is completely filled by liquid (`w becomes
macroscopically large) for all temperatures T > Tf where Tf is the filling
temperature given implicitly by the simple condition

θ(Tf ) = α , (54)
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where θ(T ) is the contact angle of a sessile drop on a flat surface. Note that
(54) is consistent with and generalizes the condition for wetting transition
θ(Tw) = 0 and implies that Tf < Tw, as the contact angle decreases with
temperature. Thus, the corresponding filling transition which occurs at Tf

may be viewed as an interfacial geometry-induced unbinding transition in a
system with broken translational invariance [39].
In [40, 41], the filling transitions in a right-angle wedge (α = π/4) involv-

ing a long-range wall-fluid interaction were studied using a microscopic model
within the density functional theory. Our DFT analysis showed that the filling
transition is first order if it occurs far below the critical point but is contin-
uous if Tf is close to Tc even though the walls still show first-order wetting
behaviour. For this continuous transition the distance of the meniscus from
the apex grows as

`w ∼ (Tf − T )−βw , (55)

as T → T−
f , with the critical exponent estimated to be βw ≈ 0.46.

This value of the critical exponent can be compared with the mean-field
value obtained from the Hamiltonian for a widely open wedge (assuming
tanα ≈ α) [42, 43]

Hw[`] =
∫

dx
∫

dy
[γ
2
(∇`)2 +W (`− α|x|)

]
, (56)

where `(x, y) is the local height of the liquid-vapour interface relative to the
horizontal. Exploiting the translation invariance of the model along the wedge,
the Euler-Lagrange equation for the equilibrium profile `(x) is:

γ
d2`

dx2
= W ′(`− α|x|) , (57)

where the prime denotes differentiation w.r.t. `. This equation, subject to the
boundary conditions ˙̀(0) = 0 and `(x) → `π + α|x| for |x| → ∞, has the first
integral:

γα2

2
= W (`w)−W (`π) . (58)

As T → Tf , the meniscus unbinds from the wedge bottom, i.e. `w → ∞ and
the first term on the r.h.s. becomes vanishingly small. Using Eq. (7) the result
given by Eq. (54) is then immediately recovered. Furthermore, from Eq. (58)
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it follows that

W (`w) =
γ(α2 − θ2)

2
∼ α− θ(T ) as T → Tf . (59)

Thus, at a critical filling transition the MF value of the order parameter crit-
ical exponent is simply determined by the leading-order decay of the binding
potentialW (`) = A/`p+· · · by expanding the r.h.s. of Eq. (59) to first order at
Tf , which yields βw = 1/p. Recall that this result is completely different to the
corresponding critical exponent for critical wetting βs = 1/(q− p) determined
by both leading and next-to-leading order terms of the binding potential. For
systems with van der Waals forces p = 2 and thus βw = 1/2 (βs = 1 ) which
is in a good agreement with the DFT result.

Figure 5: Contour of the meniscus as obtained from microscopic DFT. Also
shown (dashed line) is a circular meniscus of Laplace radius R = γ/(δµ(ρl −
ρg)).

The main conclusion of this work is that it is possible to induce critical (con-
tinuous) interfacial transitions even at walls exhibiting themselves first-order
wetting transitions by changing the wall geometry, which has been demon-
strated for a realistic microscopic model involving dispersion interactions. It
should be emphasised that for planar walls the critical wetting is a very rare
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phenomenon and in fact it has not been observed on solid substrates as yet.
Moreover, the influence of interfacial fluctuations for wetting transitions in
three dimensions is deemed to be hardly appreciable. Therefore, the wedge
structure is found to be a promising candidate for a substrate for which an
observation of interfacial critical phenomena is experimentally accessible.

These findings have been extended by studying the process of complete
filling, the analogy of complete wetting, i.e. the continuous divergence of the
adsorption (or `w) as µ→ µ0 for T > Tf . If, furthermore, θ = 0, the binding
potential is of the form (15) and if substituted into Eq. (58) we obtain [44]

`w ≈
γ(secα− 1)
δµ(ρl − ρg)

+
secα

1− βco
s

`π + · · · (60)

The first term in (60) is universal, i.e., it does not depend on the nature of the
interactions. This leading order term can be derived using purely macroscopic
concept: a meniscus that grows at the wedge corner must have a circular cross-
section with radius R = γ/(δµ(ρl−ρf )), as determined by the Laplace pressure
difference across the interface. Figure 5 shows that this macroscopic argument
is fully consistent with the microscopic DFT results and thus remains valid
even on a microscopic scale. Furthermore, the height `w then follows from the
condition that the meniscus must meet each side of the wedge at the correct
contact angle9. Figure 6 reveals, however, that this macroscopically predicted
value of the interface height above the wedge corner as a function of δµ is
systematically below the DFT results.

From Eq. (60) it follows that the interfacial Hamiltonian theory extends
these macroscopic results by predicting a presence of non-universal next-to-
leading order singular term; this contribution depends on the nature of diver-
gence of `π at a planar wall-gas interface, which in turn depends on the range
of intermolecular forces (recall, βco

s = 1/(p + 1)). When the non-universal
correction is taken into account, one obtains a remarkably good agreement
between the microscopic DFT results and Eq. (60), as shown in figure 6 for a
right-angle wedge10.
9For general value of the contact angle, the first term would be γ(sec α cos θ−1)

δµ(ρl−ρg)
.

10The results in figure 6 correspond to the model of short-range interactions, for which
βco

s = 0 and `π ∼ − ln(δµ).
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Figure 6: DFT results (symbols) for the divergence of the meniscus filling
height `w, shown in comparison with the macroscopic expression given by the
leading-order term in Eq. (60) (dashed curve) and the interfacial Hamiltonian
prediction (solid curve) which includes the next-to-leading order correction.

Apart from the thermodynamic parameters (T , µ), the nature of the fill-
ing transition may also be controlled by tuning the opening (tilt) angle ψ (α)
of the wedge. Indeed, the relation between the temperature (via the contact
angle) and the wedge opening angle is given macroscopically by (54) but this
relation does not tell anything about the order of the transition. From the
aforementioned studies it follows that the wedge filling transition may change
its order in the proximity of Tc. However, in Ref. [45] it was shown that there
exists another mechanism how to change the order of the filling transition;
namely, by reducing the opening angle one can always drive the filling transi-
tion to second order implying that the adsorption continuously changes from
micro- to macroscopic at Tf .
Similar conclusions have been made in Ref. [46] where we studied the ef-

fect of the external potential exerted by the walls of the wedge. We have
shown that both wetting and filling transitions can be induced over a wide
range of temperatures by changing the strength of the external potential. At
low temperatures we find that both wetting and filling transitions are first
order in keeping with predictions of simple local effective Hamiltonian models.
However, close to the bulk critical point the filling transition is observed to
be continuous even though the wetting transition remains first order and the
wetting binding potential still exhibits a small activation barrier. The critical
singularities for the mid-height of the meniscus for the continuous filling tran-
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sitions depend on whether retarded or nonretarded wall-fluid forces are present
and are in excellent agreement with predictions of effective Hamiltonian theory
even though the change in the order of the transition is not anticipated (as
discussed below). In particular, for retarded van der Waals forces, in which
case the binding potential W (`) ∼ `−3, we have found that `w ∼ (Tf −T ))−βw

with βw ≈ 1/3 in line with the prediction (59).
These findings are in a partial agreement with the predictions given by

the effective Hamiltonian (56). This model also predicts a change in order
from first to continuous filling, when the filling temperature Tf is sufficiently
below Tw such that there is no activation barrier in the binding potentialW (`),
defined for wetting at the planar wall. This is in qualitative agreement with the
microscopic DFT model. However, the mechanism behind the change of order
must be different than that within the interfacial Hamiltonian description.
This is because within our microscopic study the interaction model was chosen
such that the binding potential for wetting at a planar wall always has an
activation barrier, thus according to the interfacial Hamiltonian model the
filling transition would always be of first-order.
We believe that the reason of the discrepancy is that the original effective

Hamiltonian description does not capture all the details of the filling transi-
tion. There are indeed plausible reasons for this since the original interfacial
Hamiltonian model is only applicable to shallow wedges and to filling temper-
atures Tf far from Tc where a simple sharp-kink description of the interface
structure is reliable. If the wedge is very acute or if Tf ≈ Tc then a sharp-kink
approximation ceases to be valid. However, these are precisely the conditions
where we find a change in the order of the filling transition. Extending the
mesoscopic approach by adding further ingrediences that are absent in (56)
but that may prove to be crucial in these situations would present enormously
challenging task. However, further works are needed to verify our hypothesis
and a molecular simulation is perhaps the most tractable theoretical way for
it.
It remains to answer a subtle question what is the precise nature of the

change in order of the transition. In principle, this may happen via one of
two mechanisms: a tricritical point or a critical end point. We showed that
the change in the order of the filling transition occurs via a tricritical point
meaning that if we were to sit along the line of first-order filling transition
temperature Tf and decrease the opening angle ψ, the adsorption of the low
coverage phase would diverge continuously as we approach the tricritical value
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of ψ.
The effect of the opening angle was also studied in the context of surface

induced freezing [48]. The value of the opening angle of the wedge was found
to have a considerable effect on the structure of the confined particles in the
wedge. Whether or not the crystal structure is commensurate with the wedge
shape can either promote or suppress the fluid freezing. In particular, when
the opening angle is around ψ = 60◦, the wedge geometry matches with the
bulk crystal lattice, which strongly enhances freezing near the apex.
A specific but qualitatively different case of a linear wedge is a model with

ψ > π, which we will term as an edge. As we have seen, the wedge geome-
try of the substrate enhances the condensation since Tf < Tw. In fact, the
enhancement is even more effective since the filling transition is possible even
in cases when the wetting transition is completely absent for any temperature
T < Tc! This is because, the only condition to be obeyed in order the filling
transition to occur is (54), no matter what the value of Tw (if any) is. The
filling transition may thus be regarded as a typical example of a geometry-
induced transition where both the location and order of the transition can be
tuned by changing the opening angle.

f

Figure 7: A sketch of the model of an edge-shaped substrate. The height of
the liquid-gas interface is denoted as `, the thickness of the layer far from the
apex as `π and the height of the interface above the apex as `E . The sketch is
projected to the x-z plane of the Cartesian coordinates.
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A specific, and is some sense opposite case of the wedge model is the
wall geometry characterised by the opening angle ψ > π as reresented by the
sketch shown in figure 7. Now, when we consider the complete wetting scenario
µ → µ0(T ), the curved geometry of the liquid-vapour interface dictates that
the local height of the interface above the edge `E must remain finite at any
subcritical temperature, even when a macroscopically thick wetting films are
formed far from the edge (i.e. when T > Tw) [47]. A natural question is: what
is the height `E at a given chemical potential µ?
This problem can be studied using the interfacial Hamiltonian model [49]

He[`] =
∫

dx
[γ
2
(f ′(x))2 +W (`(x))

]
, (61)

where `(x) is the local height of the liquid-gas interface measured vertically
and f(x) = `(x)− tanα|x| denotes the local height of the liquid-gas interface
relative to the horizontal plane (x axis). A translation symmetry is assumed
along the edge (y-axis).
The mean-field analysis of this model shows that the equilibrium height of

the interface above the edge at coexistence is given by

`0E = `(δµ = 0) =

√
2a

γ tan2 α
, (62)

where a(T ) is the Hamaker constant defined by the binding potential of the
corresponding planar wall W (`) = A/`p + · · ·. Furthermore, `E(δµ) has been
shown to approach the coexistence value according to

δ` = `E(0)− `E(δµ) ∼ δµβco
E (63)

as δµ → 0+. The new critical exponent for complete wetting on an edge βco
E

depends on the range of the molecular interaction, such that βco
E = p/(p+ 1)

and is related to the exponent αco
s (defined by Eq. (12)), according to β

co
s =

2 − αco
s . For systems with van der Waals forces, β

co
E = 2/3. In contrast, the

next-to-leading term in (63) has been found to be universal and scales linearly
with δµ, regardless of the nature of the molecular interactions.
Furthermore, using the finite-size scaling analysis, it was shown that for

a substrate model that is characterised by a finite linear dimension L, the
height of the interface deviates from the one at the infinite substrate as ∼ L−1

in the limit of large L. All these predictions have been fully supported by the
numerical results of the microscopic density functional theory.
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6.2 Capillary grooves

A further extension of the idealized planar geometries is a groove or a capped
capillary formed by scoring a narrow deep channel into a solid surface. Let
us now consider a macroscopically long groove of depth D and width L which
is in contact with a bulk vapour and ask what is the nature of the fluid con-
densation inside the groove. It should be noted that the groove model, which
is experimentally much more relevant than an open slit, is not only of fun-
damental importance but is also central to the understanding of fluids on
structured surfaces which is vital for further technological applications (lab-
on-a-chip technologies).
To begin, we first summarise the main properties of fluid condensation (and

evaporation) in macroscopically deep grooves, D →∞, following Refs. [50, 51,
52, 53, 54, 55, 56]. It is clear that in this limit, the “boundary conditions” of
the system far from the groove bottom reduce to the system of an open slit.
Therefore, the groove is largely filled with capillary gas for µ < µcc and by
capillary liquid when µ > µcc. It is to be explored what is the nature of the
condensation in the proximity of µcc.
First of all, two regimes – below and above the wetting temperature – have

to be discussed separately.

• T < Tw: Below the wetting temperature, the macroscopic arguments
dictate that any adsorbed liquid film has to meet the side and bottom
walls in Young’s contact angle. It follows that in a low-density state two
menisci form at both corners of the groove with a near-circular shape of
the Laplace radius R = γ/(µ0 − µ). As the chemical potential increases
towards µcc, the radius increases which means that the adsorption layers
at both corners grow. However, this process must ultimately terminate
when the two menisci merge, since beyond this point

µsp(L) = µcc(L) +
2γ sin θ
L∆ρ

(64)

no thermodynamically stable configuration exists and the system must
jump into a high-density, liquid-like state. Clearly, µsp > µcc is the limit
of the metastable extension of the low-density configuration, character-
istic for first-order phase transitions.

• T > Tw. Above the wetting temperature the Young contact angle θ = 0
and therefore a single meniscus at the liquid-gas interface forms near
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the groove bottom. As µ tends to µcc, the process of adsorption is
continuous and can be characterised by a growth of the meniscus height
`. This process thus reminds complete wetting on a planar wall, which
is now shifted from mu0 to a lower value µcc(L). However, the singular
behaviour of the meniscus growth as µ→ µcc is given by

` ∼ (µcc(L)− µ)−1/4 , (65)

and is thus characterised by a different critical exponent than compete
wetting (βco = 1/3).

It has also been shown that in analogy to pre-wetting the rise of the
meniscus can also exhibit a finite jump. However, in contrast to pre-
wetting, which is the genuine first-order transition, the transition asso-
ciated with the meniscus jump must be necessarily rounded owing to its
pseudo-one-dimensional nature.

Till now, we have been discussing the limit µµ−cc but we can also ask what
happens when µcc is approached from above, i.e. the process of the liquid-like
evaporation in grooves. Using the mesoscopic interfacial Hamiltonian theory,
microscopic density functional theory and a dimensional analysis it has been
shown that the groove evaporation is always continuous regardless of the tem-
perature, such that the height of the meniscus from the top of the groove `′

decreases according to the power-law

`′ ∼ (µcc(L)− µ)−βE , (66)

with a different critical exponent than that for groove condensation which is
now βE = 1/3 for dispersion forces, i.e., exactly the same as for complete
wetting on a planar wall.
The analogy between groove evaporation and complete wetting is not ac-

cidental but in fact extends much further. It reveals that there is a precise
connection between `′ and the film thickness on a planar wall `π:

`′(µ− µcc) = `π(µ0 − µ) , (67)

which is an example of a covariance law, revealing hidden symmetry between
interfacial phenomena at different geometries.
It is also important to discuss the effect of fluctuations. The mean-field

analysis neglects the long wavelength, interfacial fluctuations of the meniscus,

31



the most dominant of which arise from those in the height of the meniscus
along the groove. Owing to a reduced effective dimensionality of the groove,
the fluctuation theory of meniscus unbinding is analogous to that of two di-
mensional complete wetting but with a line tension, resisting the undulations
of the meniscus, which is τ ≈ γL. Therefore, the relevant effective Hamilto-
nian that accounts for the fluctuations in the meniscus height along the groove
is now of the form

Hg[`] =
∫
dy

(
γL

2

(
d`(y)
dy

)2

+W (`)

)
. (68)

Using Eq. (26), the relation [26] ξ2⊥ = kBTξ/τ and the fact that ξ⊥ ≈ `
when fluctuations become important, we obtain the following estimation for
the fluctuation term:

γL ˙̀2 ≈ γL
ξ2⊥
ξ2‖

≈ (kBT )2

ξ2⊥γL
≈ (kBT )2

`2γL
. (69)

Since the binding potential for the groove evaporation reads

We ≈ (µ− µcc)(ρl − ρg)L(D − `) +
a(T )L

(D − `)2
, (70)

the repulsive term, which is of the order of (D − `)2, is marginal because
it is of the same order as the effective fluctuation term (69). This implies
that the value of the exponent βE = 1/3 is not altered by fluctuation effects.
The only influence of the fluctuations is that the Hamaker constant becomes
renormalized by a factor of 1 +O((βγL2)−1), which is only important in the
immediate vicinity of the capillary critical point.
For groove condensation, the appropriate binding potential is of the form

Wc ≈ (µ− µcc)(ρl − ρg)L`+
a(T )L2

`3
(71)

and the repulsive term becomes irrelevant. Thus, for continuous condensa-
tion, the mean-field power-law divergence `C ≈ ((µcc − µ)/L)−

1
4 will eventu-

ally cross-over to `C ≈ (L2µcc − µ)−
1
3 as µ → µcc, changing the mean-field

critical exponent βMF
C = 1/4 to the true value βC = 1/3. However, a simple

matching of these power laws shows that the size of the asymptotic regime is
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negligibly small since it scales as L−11. Thus, the mean-field description of the
continuous capillary condensation is exact except for extremely close vicinity
of the capillary-coexistence curve µ = µcc.
The (macroscopically deep) groove model can be extended to the case when

the bottom wall interacts differently with the fluid than the side walls. This
model of a heterogeneous groove [55] reveals some unexpected behaviour in
the case when both types of the wall are in a complete wetting regime (i.e.,
the considered temperature is greater than both wetting temperatures of the
walls). The relevant binding potential of the model is

Wcap(`) = δµ(ρl − ρg)`+
a2 − a1

`2
+

3a1L

`3
+ · · · , (72)

where L is the groove width and a1 and a2 are the Hamaker constants for the
side and bottom walls, respectively. Note that the complete wetting regime
requires that both a1 and a2 are positive. We can now identify three wetting
scenarios determined by a relative strength between a1 and a2:

1. For a1 = a2, i.e., in the case of a homogenous groove mentioned previ-
ously, the meniscus is repelled by a term decaying as ∼ `−3 which results
to a continuous unbinding of the meniscus according to ` ∼ δµ−

1
4

2. If a1 < a2, the meniscus repulsion is controlled by a term of O(`−2),
which leads to a continuous meniscus growth according to ` ∼ δµ−

1
3 , as

for complete wetting on a planar wall.

3. Finally, and most interestingly, if a1 > a2, i.e., if the fluid interaction
with the side walls interaction is stronger than with the the bottom
wall, the mismatch between the Hamaker constant leads to an interfacial
attraction which bounds the meniscus to a finite distance even at the
capillary phase boundary µ = µ−cc. Since the groove must be completely
filled for µ = µ+

cc, the transition is turned to be first-order, even though
the transition would be continuous in a homogenous groove made up of
either type of the wall.

The case iii) (a1 > a2) has remarkable repercussions: as the fluid state
remains in the partial wetting state, it is possible – in analogy with Young’s
equation (3) – to define a capillary contact angle:

γwg(L) = γwl(L) + γ(L) cos θcap , (73)
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valid for µ = µcc. Here, the capillary surface tensions γwg(L), γwl(L) and γ(L)
are the surface free energies between groove bottom and capillary gas, groove
bottom and capillary liquid and capillary gas and capillary liquid, respectively,
per unit area of the groove bottom. For sufficiently wide grooves, the meniscus
cross-section is near circular and thus γ(L) ≈ π/2γ.
Therefore, somewhat counter-intuitively, if the attraction of the bottom

wall is weaker than the attractive strength of the side walls, a liquid-vapour
interface of a non-zero capillary contact angle forms in the groove even though
θcap = 0 for the grooves of either material.
Let us now turn to the case of finite D, which effectively means that we are

considering microscopically deep grooves. It was shown [56] that the partial
wetting regime (T < Tw) the condensation occurs at the pressure given by
modified Kelvin equation

pcc(L,D) =
2γ cos θE

L
(74)

which has the same form as the standard Kelvin equation but is expressed
in terms of the edge contact angle θE , rather than Young’s contact angle θ,
and the concept of which has been originally proposed in Ref. [57] for the
model of open slits of finite heights. The relation between θ and θE is only
via the aspect ration L/D. In the condensed state, the meniscus is pinned
at the edges of the groove (the free energy acquires a minimum in this state)
except for Young’s contact angle θ = θ∗ ≈ 31◦ in which case the local pinning
(and the free energy barrier) vanishes. For this value of the contact angle the
meniscus can be arbitrarily moved upwards or downwards without any free-
energy cost and thus represents a Goldstone mode for condensation transition
in capillary grooves. Moreover, the nature of the condensation turns out to be
qualitatively different below and above θ∗. In both cases, the asymptotic value
of the condensation pressure in the limit of D → ∞ is the standard Kelvin
pressure (given by the classical Kelvin equation) but is approached from below
if θ < θ∗ and from above if θ > θ∗.
It should be emphasised that the value of the threshold Young’s contact

angle θ∗ ≈ 31◦ is universal, i.e. identical for any fluid and any wall material;
it only depends on the groove geometry. Our arguments have been supported
by detailed microscopic density functional theory calculations which show that
the modified Kelvin equation remains highly accurate even when L and D are
of the order of tens of molecular diameters.
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6.3 Rough surfaces

We now extend the model of a single groove to a periodic system formed by
a one-dimensional array of parallel (infinitely long) grooves. The complete
wetting proces, µ → µ−0 with T > Tw becomes considerably richer now and
can be summarised as follows [58, 59, 60]:

1. It is possible to distinguish between four different wetting regimes:

(a) Empty grooves: In this low-density state (µ � µ0) the grooves
are filled essentially by the capillary gas with only a microscopic
adsorption of the liquid phase near the groove corners.

(b) Filled grooves: In this state, the grooves are filled with capillary
liquid but the top of the walls is only partially wet, i.e. covered by
only a microscopic amount of liquid.

(c) Edge pinning : As the chemical potential is increased still more, the
top of the grooves becomes wet, since the binding potential for the
corresponding planar wall is repulsive. However, the presence of the
groove edges prohibits complete wetting and the liquid-gas interface
is pinned at the edges giving rise to a periodic array of cylindrical
droplets.

(d) Complete wetting : Sufficiently close to µ0, the liquid-gas interface
unbinds from the groove edges as followed by a further growth of the
wetting film similarly to complete wetting on a flat wall. However,
the interface remains undulated nad flattens continuously.

2. On a mesoscopic level, the wetting temperature, at which the wall is
completely wet in the limit of µ→ µ0, is the same as for the planar wall.
However, the microscopic analyses have shown that the structure of the
wall may substantially decrease the wetting temperature [59, 60].

3. There is a qualitative discrepancy between the microscopic results of
adsorption on microscopically structured (rough) walls and the macro-
scopic predictions. In particular, a contact angle θE of a sessile drop
within a purely phenomenological (thermodynamic) treatment is given
by the Wenzel law [61], according to which

cos θE = r cos θ (75)
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where θ is Young’s contact angle of the pertinent flat wall and r ≥ 1
is a parameter which characterises the wall roughness (r = 1 for a flat
wall). According to this law, the structure of the wall enhances the
“hydrophilic” character of the wall, i.e. θE < θ for θ < π/2. However,
for microscopically corrugated walls, the microscopic analyses showed the
opposite, i.e. that the contact angle increases with the wall roughness,
and indeed so much so, that the wall may become “hydrophobic” (θE >
π/2) for r large enough [59].

6.4 Bridging transitions

As a final example of the interfacial phase transitions we discuss the process
during which two wetting films merge to forme a single one. From a purely
macroscopic viewpoint this so called bridging transition is always of first-order
in view of the change of the wetting geometry. However, a more detailed anal-
ysis shows that the transition may be first-order, rounded or critical depending
on the geometric properties of the wetted bodies.

Figure 8: A sketch representing unbridged (top) and bridged (bottom) states
of two spherical colloids immersed in a solvent.

Consider first two large spherical bodies (colloids, nanoparticles. . .), each
of a radius R, embedded into a sea of small particles (solvent) at two-phase
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bulk coexistence µ = µ0. If the separation between the colloids H is large
enough, two separate spherical wetting layers form around each of the colloids
of the width depending on R and the microscopic forces. In particular, in the
presence of long-range dispersion-like (solvent-solvent or colloid-solvent) forces,
the width of the wetting layers grow as R1/3 for large R [62, 63]. In contrast,
if only short-range forces (i.e. of finite range or decaying exponentially at
large distances) are present, the wetting layers grow logarithmically with R.
However, as the colloids get closer together, their wetting layers merge and
the bridging transition occurs at a certain distance Hb.
As was shown in Ref. [64], there exists a critical radius Rc of the colloids,

such that for R > Rc the transition is first-order and reminds capillary conden-
sation (clearly, the two transitions become identical in the limit of R → ∞).
However, for R < Rc the transition is continuous (rounded). The nature and
the location of the transition have been subsequently worked out in Ref. [65].
It was shown that for the spherical colloids the shape of the bridging film is
a catenoid formed by rotating the catenary y = a cosh x

a about the revolution
x axis connecting the centers of the spheres. The distance Hb at which the
bridging transition occurs was shown to scale linearly with R according to

Hb/R = α(θ) (76)

where the function α only depends on temperature via the Young contact angle
θ. In particular, if the spherical colloids are completely wet (θ = 0), α ≈ 2.32,
while for neutral wetting, θ = π/2, α = 2 meaning that no bridging occurs.
Similar results apply for a pair of parallel cylindrical colloids. In this case,

the bridging transition occurs at an axis-to-axis distance

Hb/R = (π − 2θ) cos θ + 2 sin θ (77)

where R is the radius of the cylinders. Note that Hb = 2R, again, for neutral
wetting (θ = π/2) while Hb = πR for complete wetting (θ = 0).
These results can be further corrected by considering influence of the sin-

gular part of the surface free energy arising from complete wetting layers. This
contribution shifts the phase boundary by multiplying the r.h.s. of (76) and
(77) by factor ξl/(2R) ln(R/ξl) and ξl/R ln(R/ξl), respectively, where ξl is the
liquid correlation length of the solvent. Note that the different prefactor of
the corrections reflects the difference in the curvature between the spheres and
cylinders.
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Although the location of the bridging transitions is similar for cylinders
and spheres, all other aspects, particularly the stability of liquid bridges, are
very different in the two systems. In both cases, the bridged configuration
can extend into metastable region for H > Hb. The mechanism of these
extensions are different, though. For spheres, there always exists a limit-of-
stability Hs where the catenoid ceases to have solution touching the spheres
and for complete wetting regime Hs ≈ 2.38R; the metastable region is thus
very narrow. In contrast, the shape of the bridging film between two cylinders
is flat which has always a solution and thus the metastable region H > Hb is
unbounded. Only off the bulk two-phase coexistence, in which case the liquid-
gas interface forming the liquid bridging film is not flat but rather an arc of
the Laplace radius, there exists the end-of-the-stability which corresponds to
pinching of the bridge film where the two arc circles meet.

7 Conclusion

The presented dissertation summarizes the main of the author contribution to
the theory of interfacial phenomena at geometrically structured surfaces and
the selected articles all belong to this research area. They illustrate complexity
of these phenomena are a dramatic impact of the wall geometry; the chosen
model substrates are shown to induce some new types of phase transitions
and criticality that have no analogy in bulk or at planar surfaces. However,
although the studied phenomena appear to be very specific for the given sub-
strate geometry, there exists “covariance laws” revealing striking symmetries
and deep connections between fluid phase behaviour in very distinct systems.
There is obviously many more physically relevant models that are still largely
unexplored, especially from a microscopic perspective which would link the
phenomenology of the observed fluid behaviour with the microscopic forces
acting between fluid and wall molecules. This understanding is of a funda-
mental theoretical interest but there are also promising perspectives in appli-
cations for modern technological branches dealing with fabrication of “smart
surfaces” that is of the central interest in the modern material science. All
these challenges bring about ever increasing popularity of the field among
physicists, chemists and engineers. Dynamical behaviour of the correspond-
ing non-equilibrium systems is another area of rapidly growing interest which,
however, goes beyond the scope of the dissertation.
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