TILTING APPROXIMATIONS AND COTORSION PAIRS

PRINCIPAL POINTS OF THE DISSERTATION

Classical tilting theory generalizes Morita theory of equivalence of module cat-
egories. The key property — existence of category equivalences between large full
subcategories of the module categories — forces the representing tilting module to
be finitely generated, [1].

However, some aspects of the classical theory can be extended to infinitely gen-
erated modules over arbitrary rings. The main part of the Dissertation deals with
such an aspect: the relation of tilting to approximations (preenvelopes and precov-
ers) of modules, [3], [4], [5]. As an application, connections between tilting theory of
infinitely generated modules and the finitistic dimension conjectures are presented
in [6] and [7].

General existence theorems provide a big supply of approximations in the cate-
gory Mod-R of all modules over an arbitrary ring R. However, the corresponding
approximations may not be available in the subcategory of all finitely generated
modules. So the usual sharp distinction between finitely and infinitely generated
modules becomes unnatural, and even misleading.

Cotorsion pairs give a convenient tool for the study of module approximations.
Tilting cotorsion pairs are defined as the cotorsion pairs induced by tilting modules.
In [5] and [33], their characterization among all cotorsion pairs was given. This has
recently been applied to a classification of tilting classes in particular cases - e.g.,
over Priifer and Dedekind domains [45]. The point of the classification is that in
the particular cases, the tilting classes are of finite type in the sense of [8]. This
means that we can replace the single infinitely generated tilting module by a set of
finitely presented modules; the tilting class is then axiomatizable in the language
of the first order theory of modules.

In the following, we will present the main results of the Dissertation in the
context of recent developments in the area. Our presentation will be based on a
survey written by the author for the Handbook of Tilting Theory, [30]. To make
our account more self-contained, we will give complete definitions and statements of
the main results. Of course, proofs will be omitted; for full details, we will refer to
the corresponding parts of the Dissertation, and to the recent papers and preprints
listed in the references.

In §1, we will introduce cotorsion pairs and their relations to approximation
theory of infinitely generated modules over arbitrary rings. In §2 and §3, we will
discuss infinitely generated tilting and cotilting modules, and characterize the in-
duced tilting and cotilting cotorsion pairs. §4 will deal with tilting classes of finite
type and cotilting classes of cofinite type, and with their classification over par-
ticular rings. Finally, §5 will relate tilting approximations to the first and second
finitistic dimension conjectures.

We start by fixing our notation. For an (associative, unital) ring R, Mod-R
denotes the category of all (right R-) modules. mod-R denotes the subcategory
of Mod-R formed by all modules possessing a projective resolution consisting of
finitely generated modules.
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Let C be a class of modules. For a cardinal &, we denote by C<*, and C=*, the
subclass of C consisting of the modules possessing a projective resolution contain-
ing only < k-generated, and < k-generated, modules, respectively. Further, liﬂc
denotes the class of all modules that are direct limits of modules from C.

Let n < w. We denote by P, (Z,, F,) the class of all modules of projective
(injective, flat) dimension < n. Further, P (Z, F) denotes the class of all modules
of finite projective (injective, flat) dimension. The injective hull of a module M is
denoted by E(M).

We denote by Z the ring of all integers, and by Q the field of all rational numbers.
For a commutative domain R, () denotes the quotient field of R.

For a left R-module N, we denote by N* = Homz (N, Q/Z) the character module
of N. Note that N* is a (right R-) module.

Let M be a module. Then M is a dual module provided that M = N* for a left
R-module N. M is pure-injective provided that M is a direct summand in a dual
module. M is (Enochs) cotorsion provided that Exty (M, F) = 0 for each F € Fy.
Notice that any dual module is pure-injective, and any pure-injective module is
cotorsion The class of all pure-injective, and cotorsion, modules is denoted by PZ,
and EC, respectively.

A module M is divisible if Ext(R/rR, M) = 0 for each r € R, and torsion-free
if Torf(M,R/Rr) = 0 for each r € R. The class of all divisible and torsion-free
modules is denoted by DZ and T F, respectively.

1. COTORSION PAIRS AND APPROXIMATIONS

Cotorsion pairs are analogs of (non-hereditary) torsion pairs, with Hom replaced
by Ext. They were introduced by Salce (under the name ”cotorsion theories”) in
[83]. The analogy with the well-known torsion pairs makes it possible to derive
easily some basic notions and facts about cotorsion pairs. However, the main point
concerning cotorsion pairs is their close relation to special approximations of mod-
ules: cotorsion pairs provide a homological tie between the dual notions of a special
preenvelope and a special precover. This tie (discovered in [83], cf. 1.8.3) is a sort
of remedy for the non-existence of a duality in Mod-R.

Before introducing cotorsion pairs, we define various Ext-orthogonal classes.

Let C C Mod-R. Define C* = (,_,C*" where C*» = {M € Mod-R |
ExtR(C,M) = 0for all C € C} for each n < w. Dually, let *C = O, *C
where 1»C = {M € Mod-R | Ext}(M,C) =0 for all C € C} for each n < w.

1.1. Cotorsion pairs. Let R be a ring. A cotorsion pair is a pair € = (A, B)
of classes of modules such that A = +1B and B = A+'. The class A N B is called
the kernel of €. The cotorsion pair € is hereditary provided that Ext% (A4, B) = 0
forall Ae A, Be€ Bandi> 2.

Each module M in the kernel of a cotorsion pair € is a splitter, that is, M satisfies
Extp(M, M) = 0. We will see that the kernel of € in the tilting and cotilting cases
plays an important role: it determines completely the classes A and B. (This
contrasts with what happens for torsion pairs: since idys € Hompg (M, M) for each
module M, the "kernel” of any torsion pair is trivial.)

1.2. By changing the category, we could take a complementary point of view,
working modulo the kernel rather than stressing its role. By a result of Beligiannis
and Reiten [49], each complete hereditary cotorsion pair € = (A, B) in Mod-R
determines a torsion pair, (A, B), in the stable module category Mod-R (of Mod-R
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modulo the kernel of €), cf. 1.8.3. Consequently, special .4-precovers and special
B-preenvelopes are functorial modulo maps factoring through the kernel, cf. [76].

The class of all cotorsion pairs is partially ordered by inclusion in the first com-
ponent: (A,B) < (A',B') iff A C A’. The <-least cotorsion pair is (Po, Mod-R),
the <-greatest (Mod-R,Zy); these are the trivial cotorsion pairs.

The cotorsion pairs over a ring R form a complete lattice, £x: given a se-
quence of cotorsion pairs S = ((A4;,B;) | ¢ € I), the infimum of S in Lg is
(Nier Ai» (Ner Ai)*), the supremum being (Y1 (N, Bi)s Nier Bi)-

For any class of modules C, there are two cotorsion pairs associated with C:
(11C, (+1€)*), called the cotorsion pair generated by C, and (+'(C11),C11), the
cotorsion pair cogenerated by C. If C has a representative set of elements S, then
the first cotorsion pair is generated by the single module [[g g S, while the second
is cogenerated by the single module @g s S.

The existence of cotorsion pairs generated and cogenerated by any class of mod-
ules indicates that £5 is a large class in general.

For example, the condition of all cotorsion pairs being trivial is extremely re-
strictive: by [2] and [3], for a right hereditary ring R, this condition holds iff R = S
or R =T or R is the ring direct sum S H T, where S is semisimple artinian and T
is Morita equivalent to a 2 X 2-matrix ring over a skew-field. As another example,
consider the case of R = Z: by [67], any partially ordered set embeds in £7; in
particular, £ is a proper class.

1.3. Replacing Ext by Tor in 1.1, we can define a Tor-torsion pair as the pair
(A,B) where A = {A € Mod-R | Torf(4,B) = 0 forall B € B} and B = {B ¢
R-Mod | Torf(A,B) = 0 for all A € A}. Similarly to the case of cotorsion pairs,
we can define Tor-torsion pairs generated (cogenerated) by a class of left (right)
R-modules. Tor-torsion pairs over a ring R form a complete lattice; by 1.4.3 below,
the cardinality of this lattice is < 22" where k = card(R) + R.

The well-known Ext-Tor relations yield an embedding of the lattice of Tor-torsion
pairs into £ as follows: a Tor-torsion pair (A, B) is mapped to the cotorsion pair
(A, A*+1). The latter cotorsion pair is easily seen to be generated by the class
{B* | B € B}. In this way, Tor-torsion pairs are identified with particular cotorsion
pairs generated by classes of pure-injective modules.

Most of the classes of modules defined above occur as first or second components
of cotorsion pairs cogenerated by sets:

Lemma 1.4. [32], [4]. Let R be a ring and n < w. Let k = card(R) + No.

(1) € = (Pn, (Pn)?t) is a hereditary cotorsion pair cogenerated by P=*. If R is
right noetherian then € is cogenerated by P=*.

(2) Let € = (A,B) be a cotorsion pair generated by a class of pure-injective
modules. Then € is cogenerated by AS".

(3) Let (A,B) be a Tor-torsion pair. Then (A, A1) is a cotorsion pair cogen-
erated by AS®, and generated by {B* | B € B}. In particular, (Fp, (Fn)b)
is a hereditary cotorsion pair cogenerated by F=".

(4) (*Z,,T,) is a hereditary cotorsion pair cogenerated by (*T,)<* where X is
the least infinite cardinal such that each right ideal of R is A-generated.

(5) Let R be a right noetherian ring. Then the cotorsion pair cogenerated by
T, is cogenerated by a set.

(6) ("'DZ,DI) and (TF,TF) are cogenerated by sets of cardinality < k.

The key property of cotorsion pairs is their relation to approximations of mod-
ules. The connection is through the notion of a special approximation, [89]:
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1.5. Special approximations. Let R be a ring, M a module and C a class
of modules. An R-homomorphism f : M — C is a special C-preenvelope of M

provided that f induces a short exact sequence 0 — M J 0 5 D owithC eC
and D € 11C. C is a special preenveloping class if each module M € Mod-R has a
special C-preenvelope.

Dually, an R-homomorphism g : C — M is a special C-precover of M provided
that ¢ induces a short exact sequence 0 — B — C' % M — 0 with C € C and
B € Ct'. Cis a special precovering class if each module M € Mod-R has a special
C-precover.

The terminology of 1.5 comes from the fact that special preenvelopes and pre-
covers are special instances of the following more general notions, [60], [89]:

1.6. Let R be aring, M a module, and C a class of modules. An R-homomorphism
f: M — C with C € C is a C-preenvelope of M provided that for each C’ € C and
each R-homomorphism f’: M — C' there is an R-homomorphism g : C — C’ such
that f' =gf.

The C-preenvelope f is a C-envelope of M if f has the following minimality
property: if g is an endomorphism of C' such that gf = f then g is an automorphism.

C is a preenveloping (enveloping) class provided that each module M € Mod-R
has a C-preenvelope (envelope).

The notions of a C-precover, C-cover, precovering class, and covering class are
defined dually.

A preenvelope (precover) may be viewed as a kind of weak (co-) reflection [62];
however, we do not require the assignment M — C (C' — M) to be functorial or
unique, cf. 1.2.

However, if a module M has a C-envelope (cover) then the C-envelope (cover) is
easily seen to be uniquely determined up to isomorphism; morever the C-envelope
(cover) of M is isomorphic to a direct summand in any C-preenvelope (C-precover)
of M, [89].

Classical examples of enveloping classes include Zp and PZ, see [56] and [88],
and of covering classes, Py in case R is a right perfect ring, and 7 F in case R is a
domain, see [39] and [59].

1.7. The definitions above can be extended to the setting of an abitrary category
K (in place of Mod-R) and its subcategory C C K. In the particular case when
K = mod-R, we will say C is covariantly finite (contravariantly finite) provided that
C is preenveloping (precovering) in mod-R, cf. [38].

The following classical lemma connects cotorsion pairs to approximations of mod-
ules:

Lemma 1.8. Let R be a ring, M a module, and € = (A, B) a cotorsion pair.

(1) [87] Assume M has a B-envelope f. Then f is a special B-preenvelope.
So if B is enveloping then B is special preenveloping.

(2) [87] Assume M has a A-cover f. Then f is a special A-precover. So if A
is covering then A is special precovering.

(3) [83] A is special precovering iff B is special preenveloping. In this case €
is called a complete cotorsion pair.

The next example shows that in 1.8.3, we cannot claim that A is a covering class
iff B is an enveloping one (however, by 1.10 below, the equivalence holds in case A
is closed under direct limits):
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Example 1.9. [46], [47], [48] Let R be a commutative domain and € be the co-
torsion pair cogenerated by the quotient field (). Matlis proved that € is hereditary
iff proj.dim(Q) < 1 (that is, R is a Matlis domain).

The class B = {Q}*! is the class of all Matlis cotorsion modules. Since B =
(Mod-Q)**, Bis an enveloping class, [89]. For example, the B-envelope of a torsion-
free reduced module M coincides with the R-completion of M, cf. [64].

On the other hand, A (called the class of all strongly flat modules) is a covering
class iff all proper factor-rings of R are perfect. For example, if R is a Priifer domain
then A is a covering class iff R is a Dedekind domain.

Cotorsion pairs € = (A, B) such that A is a covering class and B is an enveloping
class are called perfect. By 1.8, each perfect cotorsion pair is complete. There is
an important sufficient condition for perfectness of complete cotorsion pairs due to
Enochs:

Theorem 1.10. [60], [89] Let R be a ring, M a module, and € = (A,B) a
cotorsion pair. Assume that A is closed under direct limits.

(1) If M has a B-preenvelope then M has a B-envelope.
(2) If M has an A-precover then M has an A-cover.

In particular, € is perfect iff € is complete iff A is covering iff B is enveloping.

Let € = (A, B) be a complete cotorsion pair. It is an open problem whether 4
is a covering class iff A is closed under direct limits (The ’if’ part is true by 1.10).
1.9 shows that B may be enveloping even if A is not closed under direct limits.

1.11. Invariants of modules. Assume € = (A, B) is a perfect cotorsion pair.
Then often the modules in the kernel, K, of € can be classified up to isomorphism
by cardinal invariants. There are two ways to extend this classification:

a) Any module A € A determines — by an iteration of B-envelopes (of A, of the
cokernel of the B-envelope of A, etc.) — a long exact sequence all of whose members
(except for A) belong to K. This sequence is called the minimal KC-coresolution of
A. The sequence of the cardinal invariants of the modules from K occuring in the
coresolution provides for an invariant of A. In this way, the structure theory of the
modules in K is extended to a structure theory of the modules in A.

b) Dually, any module B € B determines — by an iteration of .4-covers — a long
exact sequence all of whose members (except for B) belong to K, the minimal
K-resolution of B. This yields a sequence of cardinal invariants for any module
BeB.

For specific examples to a) and b), we consider the case when R is a commutative
noetherian ring:

If ¢ = Mod-R,Zp), then K = Zj, and by the classical theory of Matlis, each
M € K is determined up to isomorphism by the multiplicities of indecomposable in-
jectives E(R/p) (p a prime ideal of R) occuring in an indecomposable decomposition
of M. The cardinal invariants of arbitary modules (in A = Mod-R) constructed in
a) are called the Bass numbers. A formula for their computation goes back to Bass:
the multiplicity of E(R/p) in the i-th term of the minimal injective coresolution of
a module N is p;(p, N) = dimy,) Ext%p(k(p), N,) where k(p) = R,/Rad(R,), and
R, and N, is the localization of R and N at p, respectively, cf. [77].

If ¢ = (Fo,EC), then K consists of the flat pure-injective modules: these are
described by the ranks of the completions, 7}, of free modules over localizations R,
(p a prime ideal of R) occuring in their decomposition, [60]. The construction b)
yields a sequence of invariants for any cotorsion module N. These invariants are
called the dual Bass numbers. A formula for their computation is due to Xu [89]:
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the rank of T, in the i-th term of the minimal flat resolution of N is m;(p,N) =
dimy,,) Torfp (k(p), Homg(R,, N)).

In view of 1.4, the following result — first proved in [3] — says that most cotorsion
pairs are complete, hence provide for approximations of modules.

For a module M and a class of modules C, a C-filtration of M is an increasing
sequence of submodules of M, (M, | a < o), such that M = .., Mo, Mo =
U,6’<a Mgp for all limit ordinals a < o, and My41/M, is isomorphic to an element
of C for each a < o. A module possessing a C-filtration is called C-filtered.

Theorem 1.12. [3] Let R be a ring and € = (A, B) a cotorsion pair cogenerated by
a set of modules S. Then € is complete, and A is the class of all direct summands
of all S U {R}-filtered modules.

1.12 was applied by Enochs to prove the flat cover conjecture: each module has
a flat cover and a cotorsion envelope, [50]. This was generalized in [4] as follows:

Theorem 1.13. [4] Let R be a ring and € be a cotorsion pair generated by a class
of pure-injective modules. Then € is perfect.

The flat cover conjecture is the particular case of 1.13 for & generated by PZ.
For Dedekind domains, we can extend 1.13 further:

Theorem 1.14. [4] Let R be a Dedekind domain and € be a cotorsion pair generated
by a class of cotorsion modules. Then € is perfect.

Recently, it turned out that the possibility of extending 1.13 to larger classes of
modules depends on the extension of set theory (ZFC) that we work in.

In the positive direction, Godel’s axiom of constructibility (V = L) is useful, or
rather its combinatorial consequence called Jensen’s diamond principle <, see [57].
The following result is proved in [4] by induction, applying ¢ in regular cardinals,
and Shelah’s Singular Compactness Theorem in the singular ones:

Theorem 1.15. [4] Assume . Let R be a right hereditary ring and € a cotorsion
pair generated by a set of modules. Then € is complete.

In the negative direction, Shelah’s uniformization principle UP™ is useful, cf.
[57]. Like Godel’s axiom of constructibility, UP™ is relatively consistent with ZFC
+ GCH, but UPT and ¢ are mutually inconsistent.

In [2], UP* was used, for any non-right perfect ring R, to construct particular
free modules G C F such that M = F/G is a non-projective module satisfying
Extp(M, N) = 0 for each module N with card(N) < .

The following is proved in [14] (cf. with 1.14):

Theorem 1.16. Assume UPT. Let R be a Dedekind domain with a countable
spectrum, and € a cotorsion pair generated by a set containing at least one non-
cotorsion module. Then € is not cogenerated by a set of modules.

Let us note that in the particular case of R = Z, there is a stronger recent result
by Eklof and Shelah [58], using a much stronger version of UPT denoted by SUP
(SUP is also relatively consistent with ZFC + GCH, cf. [58]):

Theorem 1.17. Assume SUP. Denote by € = (A, B) the cotorsion pair generated
by 7Z.. Then Q does not have an A-precover; in particular, € is not complete.

The class A in 1.17 is the well-known class of all Whitehead groups.
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2. TILTING MODULES AND APPROXIMATIONS

In this section, we will deal with relations between tilting and approximation
theory of modules. As observed in [5] and [33], for this purpose, it is convenient to
work with a rather general definition of a tilting module. Our definition will allow
for infinitely generated modules, and also modules of finite projective dimension
> 1.

2.1. Tilting modules. Let R be a ring. A module T is tilting provided that
(1) proj.dim(T) < oo;
(2) Exth(T,T") =0 for any cardinal x and any i > 1;
(3) There are k < w, T; € Add(T) (i < k), and an exact sequence

O-R—->Ty—Ty = =T, —=0.

Here, Add(T) denotes the class of all direct summands of arbitrary direct
sums of copies of the module 7.

Let n < w. Tilting modules of projective dimension < n are called n-tilting. A
class of modules C is n-tilting if there is an n-tilting module 7' such that C = {T}*.
A cotorsion pair € = (A, B) is n-tilting provided that B is an n-tilting class.

Notice that the notions above do not change when replacing the tilting module
T by the tilting module T(*) (x > 1). It is convenient to define an equivalence of
tilting modules as follows: T is equivalent to T' provided that the induced tilting
classes coincide: {T}+ = {T'}+

Clearly, 0-tilting modules coincide with the projective generators. Finite dimen-
sional tilting modules over artin algebras have been studied in great detail - see
[35], [79] and [86] for much more on this classical case. We will now give three
examples of infinitely generated 1-tilting modules:

2.2. The Fuchs tilting module. [64], [65] Let R be a commutative domain,
and S a multiplicative subset of R. Let ds = F/G where F is the free module with
the basis given by all sequences (sg, ..., s,) where n > 0, and s; € S for all i < n,
and the empty sequence w = (). The submodule G is generated by the elements of
the form (so,...,8,)8n — (S0,.-.,Sn—1) where 0 <n and s; € S forall 1 <i < n,
and of the form (s)s — w where s € S.

The module § = 0g\ o} was introduced by Fuchs. Facchini [61] proved that &
is a 1-tilting module. The general case of g comes from [65]: the module dg is a
1-tilting module, called the Fuchs tilting module. The corresponding 1-tilting class
is {ds}+ = {M € Mod-R | Ms = M for all s € S}, the class of all S-divisible
modules. If R is a Priifer domain or a Matlis domain, then the 1-tilting cotorsion
pair cogenerated by ¢ is (Py, DI).

Example 2.3. [8] Let R be a commutative 1-Gorenstein ring. Let Py and Py
denote the set of all prime ideals of height 0 and 1, respectively. By a classical
result of Bass, the minimal injective coresolution of R has the form

0—R— P ER/q) > € E(R/p) — 0.
7€P peEP;

Consider a subset P C P;. Put Rp = 71'*1(691)613 E(R/p)). Then Tp = Rp &
@, E(R/p) is a 1-tilting module, the corresponding 1-tilting class being {Tp}* =
{M | Extx(E(R/p), M) = Oforallp € P}. In particular, if R is a Dedekind
domain then {Tp}t = {M | Exty(R/p, M) = Oforallp € P} = {M | pM =
M for all p € P}.
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In his classical work [81], Ringel discovered analogies between modules over
Dedekind domains and tame hereditary algebras. The analogies extend to the
setting of infinite dimensional tilting modules:

2.4. The Ringel tilting module. [81], [82] Let R be a tame hereditary algebra
over an algebraically closed field k. Let G be the generic module. Then S = End(G)
is a skew-field and dimg G = n < w. Denote by T the set of all tubes. If & € T is a
homogenous tube, we denote by R, the corresponding Priifer module. If o € T is
not homogenous, denote by R, the direct sum of all Priifer modules corresponding
to the rays in a. Then there is an exact sequence

0+R—->G" 5 PRM -0
€T

where A\, >0 forall a € T.

Let P C 7. Put Rp = 7 Y(@,cp RY)). Then Tp = Rp & @,cp Ra is a
1-tilting module, called the Ringel tilting module. The corresponding 1-tilting class
is the class of all modules M such that Exty(N, M) = 0 for all (simple) regular
modules N € P.

Now, we will consider a simple example of an infinitely generated n-tilting mod-
ule. In §5, we will see that this example is related to the validity of the first finitistic
dimension conjecture for Iwanaga-Gorenstein rings.

A ring R is called Iwanaga-Gorenstein provided that R is left and right noe-
therian and the left and right injective dimensions of the regular module are finite,
[60]. In this case, inj.dim(Rg) = inj.dim(grR) = n for some n < w, and R is called
n-Gorenstein. Notice that 0-Gorenstein rings coincide with the quasi-Frobenius
rings.

Example 2.5. Let R be an n-Gorenstein ring. Let

0O—-R—>Ey—---—E,—=0

be the minimal injective coresolution of R. Then T = @, E; is an n-tilting
module. The only non-trivial fact needed for this is that P = P, = 7, = T
(= Fn = F) for any n-Gorenstein ring, cf. [60, §9].

For any tilting cotorsion pair € = (A4, B), there is a close relation among the
classes A, B, and the kernel of ¢:

Lemma 2.6. [5], [33] Let R be a ring and € = (A, B) a tilting cotorsion pair. Let
T be an n-tilting module with {T}*+ = B. Then
(1) € is hereditary and complete. Moreover, € < (P, P;-), and the kernel of €
equals Add(T).
(2) A coincides with the class of all modules M such that there is an exact
sequence

O-M->Ty—--—T,—0

where T; € Add(T) for all i < n.

(3) Let 0 —» F,, — -+ — Fo — T — 0 be a free resolution of T and let
S = {Si | i < n} be the corresponding set of syzygies of T. Then A
coincides with the class of all direct summands of all S-filtered modules.

(4) B coincides with the class of all modules N such that there is a long exact
sequence

=Ty 2= =Ty N=0
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where T; € Add(T) for all i < w. In particular, B is closed under arbitrary
direct sums.

We arrive at the characterization of tilting cotorsion pairs in terms of approxi-
mations. The case of n = 1 was treated in [5]:

Theorem 2.7. [5] Let R be a ring.

(1) A class of modules C is 1-tilting iff C is a special preenveloping torsion class.
(2) Let € = (A,B) be a cotorsion pair. Then € is 1-tilting iff € is complete,
¢ < (P1,Pih), and B is closed under arbitrary direct sums.

We stress that the special approximations induced by 1-tilting modules may not
have minimal versions in general (compare this with 3.5.1 below). For example, if
R is a domain and ¢ is the Fuchs tilting module from 2.2 then the special {§}+-
preenvelopes coincide with the special divisible preenvelopes (and also with the
special FP-injective preenvelopes). However, if R is a Priifer domain of global
dimension > 2, then the regular module R does not have a divisible envelope (and
so it does not have an FP-injective envelope), see [27].

The characterization in the general case is due to Angeleri Hiigel and Coelho
[33]:

Theorem 2.8. [33] Let R be a ring and € = (A, B) be a cotorsion pair. Then €
is n-tilting iff € is hereditary and complete, € < (P, P;k), and B is closed under
arbitrary direct sums.

3. COTILTING MODULES AND APPROXIMATIONS

In this section, we will consider the dual case of cotilting modules and cotilting
cotorsion pairs.

Similarly as tilting modules, the cotilting ones have first appeared in the rep-
resentation theory of finite dimensional k-algebras. There, the finite dimensional
cotilting modules coincide with the k-duals of the finite dimensional tilting modules,
so the theory is obtained by applying the k-duality.

1-cotilting modules over general rings are closely related to dualities (see [54] for
more details). Also, in §4, we will see that restricting to tilting modules and classes
of finite type, we actually have an explicit homological duality available producing
the corresponding cotilting modules and classes of cofinite type.

However, there is no explicit duality available in the general case. The problem is
that the dual of the key approximation construction of 1.12 does not work in ZFC:
by 1.17, there is an extension of ZGC + GCH with a cotorsion pair € generated by
a set such that € is not complete.

Fortunately, there is a remedy. First, for n = 1, a fundamental recent result of
Bazzoni says that 1-cotilting modules are pure-injective (see 3.3 below), so we can
apply 1.13 directly. As shown in [33], for n > 1, the classical work of Auslander
and Buchweitz [36] makes it possible to overcome the problem.

3.1. Cotilting modules. Let R be a ring. A module C'is cotilting provided that
(1) inj.dim(C) < oo;
(2) ExtRr(C*,C) =0 for any cardinal £ and any i > 1;
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(3) There are k < w, C; € Prod(C) (i < k), and an exact sequence

0—>Cp—-+—>Co—>W =0,

where W is an injective cogenerator for Mod-R, and Prod(C') denotes the

class of all direct summands of arbitrary direct products of copies of the
module C.

Let n < w. Cotilting modules of injective dimension < n are called n-cotilting.
A class of modules C is n-cotilting if there is an n-cotilting module C' such that
C = H{C}. A cotorsion pair ¢ = (A,B) is n-cotilting provided that A is an n-
cotilting class.

The equivalence of cotilting modules is defined as follows: C is equivalent to C'
provided that the induced cotilting classes coincide: +{C} = +{C"}.

0-cotilting modules coincide with the injective cogenerators. In 4.11 below, we
will see that any resolving subclass of PS¢ yields an n-cotilting class (of left R-
modules), so there is a big supply of n-cotilting modules for n > 1 in general.

A class C of modules is definable provided that C is closed under arbitrary direct
products, direct limits, and pure submodules, [55]. (Definability implies axiom-
atizability: definable classes are axiomatized by equality to 1 of certain of the
Baur-Garavaglia-Monk invariants, cf. [78].)

It is an open problem whether each cotilting module is pure-injective. There is
a criterion of pure-injectivity of cotilting modules, [42]:

Lemma 3.2. Let R be a ring and C a cotilting module. Then C' is pure-injective
iff H{C} is closed under direct limits iff -{C} is closed under pure submodules iff
L{CY is definable.

The criterion is satisfied for n = 1:

Theorem 3.3. [40] Let R be a ring and C a 1-cotilting module. Then C is
pure-injective. In particular, -{C} is a definable class.

Now, we turn to relations between cotilting modules and approximations. Except
for part 3., the dual of 2.6 holds true — a proof in case n = 1 appears in [5]; the
general case makes use of [36], and is proved in [33]. (In view of 3.3, one can proceed
more directly for n = 1, by dualizing the proof of 2.6 with help of 1.13):

Lemma 3.4. Let R be a ring and € = (A, B) be a cotilting cotorsion pair. Let C
be an n-cotilting module with +{C} = A. Then
(1) € is hereditary and complete. Moreover, (*T,,T,) < €, and the kernel of
¢ equals Prod(C).
(2) A coincides with the class of all modules M such that there is a long exact
sequence

0+M-—>Co— - -—=Ci = Ciy1 — ...
where C; € Prod(C) for alli < w. In particular, A is closed under arbitrary
direct products.
(3) B coincides with the class of all modules N such that there is an exact
sequence

0-+Cp—=--—=Co—=>N—=0
where C; € Prod(C) for all i < n.

Theorem 3.5. Let R be a ring.



TILTING APPROXIMATIONS AND COTORSION PAIRS 11

(1) [5] A class of modules C is 1-cotilting iff C is a covering torsion-free class.

(2) [33] Let € = (A,B) be a cotorsion pair. Then € is n-cotilting iff € is
hereditary and complete, (*Z,,T,) < &, and A is closed under arbitrary
direct products.

In particular, 1-cotilting classes coincide with those torsion-free classes C that
are covering. If R is right noetherian, then C is completely determined by its
subclass C Nmod-R, and the latter is characterized as a torsion-free class in mod-R
containing R. More precisely, we have

Theorem 3.6. [51] Let R be a right noetherian ring. There is a bijective corre-
spondence between 1-cotilting classes of modules, C, and torsion-free classes, &, in
mod-R containing R. The correspondence is given by the mutually inverse assign-
ments C = C N mod-R and € — liﬂé‘.

4. FINITE AND COFINITE TYPE

The duality between the notions of a tilting and cotilting module can be made
explicit in case the modules are of finite and cofinite type, respectively. These
notions were introduced and studied in [8] and [45], as a continuation of [7] and

[27].

4.1. Tilting modules of finite type. Let R be a ring.

(1) Let C be a class of modules. Then C is of finite type (countable type) provided
there exist n < w and a subset S C P~ (S C Ps*) such that C = S*.

(2) Let T be a tilting module. Then T is of finite type (countable type, definable)
provided the class {T'}* is of finite type (countable type, definable).

Lemma 4.2. [8] Let R be a ring and C be a class of modules of finite type. Then
C is tilting and definable.

4.2 says that there is a rich supply of tilting classes in general: any subset
S C P (for some n < w) determines one (a more precise description appears in
4.11 below).

There is a criterion for tilting modules to be of finite type:

Lemma 4.3. [8] Let R be a ring and T be a tilting module. Let B = {T}*, and
(A, B) be the corresponding tilting cotorsion pair. Then T is of finite type iff T is
definable and T € lim A<,

The last condition of 4.3 is always satisfied for n = 1:

Lemma 4.4. [30] Let R be a ring and M be a module of projective dimension < 1.
Let (A, B) be the cotorsion pair cogenerated by M. Then M € li_n}A<“’.

For 1-tilting modules, 4.3 and 4.4 yield

Theorem 4.5. [45] Let R be a ring and T be a 1-tilting module. Then T is
definable iff T is of finite type iff {T}~ is closed under pure submodules.

It is open whether all 1-tilting modules are of finite type. However, they are
always of countable type:

Theorem 4.6. [45] Let R be a ring and T be a 1-tilting module. Then T is of
countable type.
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The proof of 4.6 uses set-theoretic methods developed by Eklof, Fuchs and Shelah
for the structure theory of so called Baer modules [57]. However, 4.6 holds in ZFC.
In this sense, 4.6 says that the structure of 1-tilting modules, and classes, is purely
an algebraic problem, depending only on the structure of countably and finitely
presented modules rather than additional set-theoretic assumptions.

The counterpart of a tilting (right R-) module of finite type is a cotilting left
R-module of cofinite type:

4.7. Cotilting modules of cofinite type. Let R be a ring. Let C C R-Mod.
Then € is of cofinite type provided that there exist n < w and a subset S C PS¢ such
that C = ST, where ST = {M € R-Mod | Tor®(S, M) =0 for all S € S and all 0 <
i<n}.

Let C be a cotilting left R-module. Then C' is of cofinite type provided that the
(cotilting) class L{C} is of cofinite type.

Applying 3.5, we can dualize 4.2:

Lemma 4.8. Let R be a ring and C be a class of left R-modules of cofinite type.
Then C is cotilting and definable.

4.4 yields a characterization of 1-cotilting classes of cofinite type:

Lemma 4.9. [30] Let R be a ring and C be a class of left R-modules. Then C is
1-cotilting of cofinite type iff there is a module M € Py such that C = {M}T.

Since classes of cofinite type are closed under direct limits, any cotilting module
of cofinite type is pure-injective by 3.2.

The bijective correspondence between tilting classes of finite type and cotilting
classes of cofinite type is mediated by resolving subclasses of mod-R:

Definition 4.10. Let R be a ring and S C mod-R. Then S is resolving provided
that P5“ C S, S is closed under direct summands and extensions, and S is closed
under kernels of epimorphisms.

A subclass S C P is resolving iff S is closed under extensions and direct
summands, and R € S.

Theorem 4.11. [8] Let R be a ring and n < w. There is a bijective correspondence
among

e n-tilting classes of finite type,

o resolving subclasses of P,

e n-cotilting classes of cofinite type in R-Mod.

Moreover, if T' is an n-tilting module of finite type then 7™ is an n-cotilting left
R-module of cofinite type; in the correspondence of 4.11, the n-tilting class {T'}+
corresponds to the n-cotilting class -{T*} = {T'}7, cf. [8].

There is a partial converse of 4.8:

Theorem 4.12. [30] Let R be a left noetherian ring. Assume that Fy = Py (this
holds when R is (i) right perfect or (ii) right hereditary or (iii) 1-Gorenstein, for
example). Then every 1-cotilting left R-module is of cofinite type.

4.12 applies to the left artinian case:

4.13. 1-cotilting classes over left artinian rings. [30] Let R be a left artinian
ring. Then 1-cotilting classes of left R-modules are of cofinite type, hence coincide
with the classes of the form {M € R-Mod | Torf(S, M) = 0 for all S € S} for
some S C P;~“. Moreover, by 4.11, these classes correspond bijectively to the
classes &’ which are closed under extensions and direct summands, and satisfy
Pyv CS"CPrY.
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In general, the converse of 4.8 does not hold: there exist Priifer domains with
1-cotilting modules that are not of cofinite type. We are going to discuss the recent
results on the Priifer and Dedekind domain cases in detail - these results extend

[4]:

4.14. Tilting classes over Priifer domains. [45], [84], [44] Let R be a Priifer
domain. Then all tilting modules have projective dimension < 1, and they are
of finite type. Moreover, for each 1-tilting class, 7, there is a set, £, of non-zero
finitely generated (projective) ideals of R such that 7 consists of all modules M
satisfying IM = M for all I € £ (or, equivalently, Extg(R/I, M) =0forall I € £).
This is proved in [45] and [44], using 4.6.

It follows that tilting classes correspond bijectively to finitely generated localizing
systems of R in the sense of [63, §5.1]. Here, a filter, Z, of non-zero ideals of R is a
finitely generated localizing system of R provided that Z contains a basis consisting
of finitely generated ideals, and Z is multiplicatively closed.

Given such system Z, the corresponding tilting class consists of all modules M
satisfying IM = M for all I € Z, cf. [84]. Note that by [63, 5.1], finitely generated
localizing systems of R correspond bijectively to the overrings of R.

By 4.11, cotilting classes of cofinite type coincide with the classes of the form
{M | Torf(M,R/I) = 0 for all I € T} where 7 is a finitely generated localizing
system of R.

However, by [43], there exist maximal valuation domains R such that the class
of all Whitehead modules is 1-cotilting, but not of cofinite type.

A complete description is available for Dedekind domains:

4.15. Tilting and cotilting modules over Dedekind domains. [4], [45] Let
R be a Dedekind domain. By 2.3, for each set of maximal ideals, P, there is
a tilting module Tp = Rp ® @, p E(R/p) with the corresponding tilting class
{Tp}*+ = {M | pM = M for all p € P}. Since localizing systems of ideals of R are
determined by their prime ideals, by 4.14, any tilting module T is equivalent to Tp
for a set of maximal ideals P, cf. [45]. (In the particular case when R = Z, and
R is a small Dedekind domain, this result was proved assuming V = L in [17] and
[31], respectively).

By 4.11, cotilting classes of cofinite type are exactly the classes of the form
Cp = {M | TorF(M,R/p) = 0 for all p € P} for a set, P, of maximal ideals of
R. Moreover, Cp = *{Cp} where Cp = [[,cp Jp ® D,cSpec(ryp E(R/0) is a
cotilting module. (Here, J, denotes the completion of the localization of R at p).

By 4.12, all cotilting classes are of the form Cp, and all cotilting modules are
equivalent to the modules of the form Cp, for a set, P, of maximal ideals of R, cf.

[4].
The analogy between modules over Dedekind domains and over tame hereditary

algebras (cf. 2.3 and 2.4) extends to the tilting and cotilting setting, cf. [51] and
[52].

5. TILTING APPROXIMATIONS AND THE FINITISTIC DIMENSION CONJECTURES

Let R be a ring and C be a class of modules. The C-dimension of R is defined
as the supremum of projective dimensions of all modules in C.

If C = Mod-R then the C-dimension is called the (right) global dimension of R;
if C = P, it is called the big finitistic dimension of R. If C is the class of all finitely
generated modules in P then the C-dimension is called the little finitistic dimension
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of R. These dimensions are denoted by gl.dim(R), Fin.dim(R), and fin.dim(R),
respectively.

Clearly, fin.dim(R) < Fin.dim(R) < gl.dim(R) for any ring R. Moreover, if R
has finite global dimension, then gl.dim(R) is attained on cyclic modules, so all the
three dimensions coincide.

If R has infinite global dimension, then the finitistic dimensions take the role
of the global dimension to provide a fine measure of complexity of the module
category. For example, if R = Zp» for a prime integer p and n > 1, then R has
infinite global dimension, but both finitistic dimensions are 0; they certainly reflect
better the fact that R is of finite representation type.

In [39], Bass considered the following assertions

(I) fin.dim(R) = Fin.dim(R)

(IT) fin.dim(R) is finite
and proposed to investigate the validity of these assertions in dependence on the
structure of the ring R. Later, (I) and (II) became known as the first, and the
second, finitistic dimension conjecture, respectively.

In the case when R is commutative noetherian, Bass, Raynaud and Gruson
proved that Fin.dim(R) coincides with the Krull dimension of R, so classical ex-
amples of Nagata can be used to provide counter-examples to the assertion (II).
In case R is commutative local noetherian, Auslander and Buchweitz proved that
fin.dim(R) coincides with the depth of R, so (I) holds iff R is a Cohen-Macaulay
ring,.

Assume that R is right artinian. Then the validity of (II) is still an open problem.
However, Huisgen-Zimmermann proved that (I) need not hold even for monomial
finite dimensional algebras, [69]. Smalg then constructed, for any 1 < n < w,
examples of finite dimensional algebras such that fin.dim(R) = 1 and Fin.dim(R) =
n, [85].

There are many positive results available: (II) was proved for all monomial
algebras in [68], for algebras of representation dimension < 3 in [74] etc.

Moreover, (I) and (IT) were proved for all algebras such that P<¢ is contravari-
antly finite in [37] and [72]. In this section, we will use tilting approximations to give
a simple proof of the latter result. Then we will prove (I) for all Iwanaga-Gorenstein
rings.

In the rest of this section, R will be a right noetherian ring. We will denote by
¢ = (A, B) the cotorsion pair cogenerated by the class P<“. By 1.12, € is complete
and hereditary; moreover, P<¢¥ = AN mod-R.

The basic relation between tilting approximations and the finitistic dimension
conjectures comes from [7]:

Theorem 5.1. [7] Let R be a right noetherian ring. Then (II) holds iff € is a
tilting cotorsion pair. Moreover, if T is a tilting module such that {T}* = B, then
fin.dim(R) = proj.dim(T).

5.2. The tilting module 7" in 5.1 is unique up to equivalence, and it is clearly of
finite type. In principle, T' can be constructed as in the proof of 2.8: that is, by
an iteration of special B-preenvelopes of R etc. yielding an Add(T")-coresolution of
R,0—+R—=Ty—---—=T, =0, and giving T = @,,, T;. However, little is
known of the (definable) class B in general, so this construction is of limited use.
(The construction works fine for gl.dim(R) < co. Then B = Zy, so the Add(T)-
coresolution above can be taken as the minimal injective coresolution of R.)

In the artinian case, we can compute fin.dim(R) using A-approximations of all
the (finitely many) simple modules. This is proved in [6], generalizing [37]:
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Theorem 5.3. [6] Let R be a right artinian ring and {So,...Sm} be a represen-
tative set of all simple modules. For each i < m, take a special A-preenvelope of
Si, fi : Ay = Si. Then fin.dim(R) = max;<mproj.dim(A;).

Moreover, all the modules A; (i < m) can be taken finitely generated iff P<“ is
contravariantly finite. In this case (II) holds true, since P<* = AN mod-R.

Now, we will relate pure-injectivity properties of the tilting module 7" from 5.1
to closure properties of the class A.

A module M is pure-split if all pure submodules of M are direct summands;
M is Y -pure-split iff all modules in Add(M) are pure-split. For example, any
> -pure-injective module is Y _-pure-split, [71].

A module M is product complete if Prod(M) C Add(M). Any product complete
module is Y -pure-injective, [75].

The following is proved in [7] and [9]:

Lemma 5.4. Let R be a right noetherian ring satisfying (II). Let T be the tilting
module from 5.1. Then

(1) T is > -pure-split iff A is closed under direct limits.

(2) T is product complete iff A is closed under products iff A is definable.

(3) A="P iff Add(T) is closed under cokernels of monomorphisms.

5.5. The condition A = P implies (I), since any module of finite projective dimen-
sion is then a direct summand in a P<“-filtered module, by 1.12. In fact, the proof
of the first finitistic dimension conjectures in 5.6 and 5.8 below is based on proving
that A = P. However, (I) may hold even if A C P, see [9].

Theorem 5.6. [7] Let R be an artin algebra such that (II) holds. Let T be
the tilting module from 5.1. Then T can be taken finitely generated iff P<¥ is
contravariantly finite. In this case, (I) holds.

5.3 and 5.6 now give

Corollary 5.7. [37], [72] Let R be an artin algebra such that P<“ is contravari-
antly finite. Then (I) and (II) hold for R.

All right serial artin algebras satisfy the assumption of 5.7, see [70]. However,
there are finite dimensional algebras R with fin.dim(R) = Fin.dim(R) = 1 such
that P<“ is not contravariantly finite, for example the IST-algebra [73]; for those
algebras, T is an infinitely generated 1-tilting module.

Finally, we turn to Iwanaga-Gorenstein rings (see 2.5). Let n < w and R be
n-Gorenstein. Then P =7 = P,, = Z,,. In particular, there exist cotorsion pairs
D = (P,GI) and € = (GP,I). The modules in GZ are called Gorenstein injective,
the ones in GP Gorenstein projective. The kernel of ® equals Zg, the kernel of & is
Po, cf. [60]. Clearly, Fin.dim(R) = n, so (II) holds.

By [8], also (I) holds:

Theorem 5.8. [8] Let R be an Iwanaga-Gorenstein ring. Then (I) holds true.
Moreover, the tilting module T from 5.1 can be taken of the form T = @, . I;
where 0 — R — Iy — --+ — I, — 0 is the minimal injective coresolution of R.

If R in 5.8 is an artin algebra, then T is finitely generated. So by 5.6, Iwanaga-
Gorenstein artin algebras give yet another example of algebras with P<“ contravari-
antly finite, [37].

NOTE: The Dissertation consists of the papers (1)-(7) listed below.
The references (8)-(31) concern related work of the author in the past
decade, the remaining references refer to related works of other authors.
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