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Resumé

The Cramér–Rao Lower Bound (CRLB) is a lower bound on the covariance matrix of the
error of unbiased vector parameter estimators. It represents a bound on an information
content of data about an unknown parameter in a statistical model of the given data. CRLB
is a classical tool stemming from the works of Cramér, Rao [8], [9], and other researchers
in 1950’s. CRLB has many extensions and modifications: a Bayesian CRLB for random
parameters [10], [11], a hybrid CRLB for a mixture of random and deterministic parameters
[12], a CRLB for biased estimates [13].

Several other more accurate lower bounds were derived, e.g. Barankin bound [14], Bhat-
tacharyya bound [15], and (in the Bayesian context) a Ziv-Zakai bound [16], to name a few.
However, CRLB remains the most frequently used lower bound in a very wide variety of
signal processing problems thanks to its mathematical tractability. The bound is used as a
performance gauge for all existing parameter estimators, indicating whether the estimators
utilize the available information about the estimated parameter efficiently or not, and in
what extent. The CRLB itself is subject of a theoretical research up to now, see, e.g., [13].

The dissertation consists of seven scientific articles on computing different variants of the
CRLB in different applications:

[1] P. Tichavský, “Posterior Cramer-Rao bounds for adaptive harmonic retrieval”, IEEE
Trans. on Signal Processing vol. 43, no.5, pp. 1299-1302, May 1995.

[2] P. Tichavský, C. Muravchik and A. Nehorai, “Posterior Cramér–Rao bounds for discrete–
time nonlinear filtering”, IEEE Tr. on Signal Processing, vol. 46, no. 5, pp. 1386-1396,
May 1998.

[3] M. Šimandl, J. Královec and P. Tichavský, “Filtering, predictive, and smoothing Cramér-
Rao bounds for discrete-time nonlinear dynamic systems”, Automatica, vol. 37, no.
11, pp. 1703-1716, November 2001.

[4] P. Tichavský, K.T. Wong and M.D. Zoltowski, “Near-Field/Far-Field Azimuth & El-
evation Angle Estimation Using a Single Vector-Hydrophone”, IEEE Tr. on Signal
Processing, vol. 49, no. 11, pp. 2498-2510, November 2001.

[5] P. Tichavský and K.T. Wong, “Quasi-fluid-mechanics-based quasi-Bayesian Cramer- Rao
bounds for deformed towed-array direction finding”, IEEE Tr. on Signal Processing,
vol. 52, no.1, pp. 36-47, January 2004.

[6] P. Tichavský, Z. Koldovský, and E. Oja, “Performance Analysis of the FastICA Algo-
rithm and Cramér-Rao Bounds for Linear Independent Component Analysis”, IEEE
Tr. on Signal Processing, vol. 54, no. 4, pp.1189–1203, April 2006. Corrections: vol.
56, no. 4, pp. 1715–1716, April 2008.

[7] P. Tichavský, A.H. Phan, Z. Koldovský, “Cramér-Rao-Induced Bounds for CANDE-
COMP/PARAFAC tensor decomposition”, IEEE Trans. Signal Processing, vol. 61,
no. 8, pp. 1986–1997, April 2013.

These papers include the Bayesian CRLB derived for the recursive system identification,
and the deterministic and the hybrid CRLB for the recursive sinusoidal frequency estimation,
for nonlinear filtering, for the direction-of-arrival estimation, for the independent component
analysis, and for the canonical polyadic tensor decomposition, respectively. Although the
concept of the theory of the CRLB is well known, in practical applications its computation
might be quite complicated, and the computation of this bound in particular applications
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is novel and important contribution to understanding the relation between the data and
the estimated parameter. Sometimes, analysis of the CRLB leads to a derivation of new
estimators. For example, the performance analysis of the algorithm FastICA for the inde-
pendent component analysis and the computation of the corresponding CRLB [6] has led to
a derivation of the algorithm EFICA [18] .

1 Introduction

Classical Cramér-Rao lower bound is a bound on covariance matrix of error of unbiased
estimates of an unknown deterministic parameter.

Assume we are given a family of distribution functions of the N−dimensional vector X,
indexed by a vector of parameters θ. X represents the random data and θ is the unknown
deterministic parameter. The range Θ of θ is assumed to be a subset of RM , so θ is a
real-valued vector of dimension M . Let fθ(X) be the probability density of X given θ ∈ Θ.
Assume that such probability density exists and is twice differentiable with respect to θ.
The Fisher information, if exists, is defined as

F (θ) = −Eθ

[
∂2 log fθ(X)

∂θ∂θT

]
(1)

where Eθ is the expectation operator with respect to the density fθ(X). Let θ̂(X) be an
unbiased estimate of θ, and assume that

1. support of the density fθ(X), i.e. the set of X ∈ RN , where fθ(X) > 0, is independent
of θ

2. ∀θ ∈ Θ;∀m = 1, . . . ,M ; 0 = ∂
∂θm

∫
fθ(Y )dY =

∫ ∂fθ(Y )
∂θm

dY

3. ∀θ ∈ Θ;∀m = 1, . . . ,M ; ∂
∂θm

∫
θ̂(Y )fθ(Y )dY =

∫
θ̂(Y )∂fθ(Y )

∂θm
dY

4. F (θ) in (1) exists and is invertible .

Then, the celebrated Cramér-Rao inequality holds,

Eθ

[
(θ̂(X)− θ)(θ̂(X)− θ)T

]
≥ [F (θ)]−1 . (2)

The matrix inequality in (2) means that the difference between the left-hand side and right-
hand side of (2) is a positive semi-definite matrix.

The classical CRB is very well known. For example, it is known that equality in the
CRB inequality can be achieved if and only if the probability distribution fθ(X) belongs to
the family of exponential distributions. If a maximum likelihood estimator of parameter θ
exists, its variance attains the CRLB asymptotically.

In comparison to the classical CRLB, the Bayesian CRLB is much less frequently studied.
The set-up is different. It is assumed that the parameter θ is random, and a joint probability
density fθ,X of the pair (θ,X) exists. The Cramer-Rao inequality reads

E
[
(θ̂(X)− θ)(θ̂(X)− θ)T

]
≥ F−1 (3)

where the expectation is taken with respect to the pair (θ,X), and F is the information
matrix defined as

F = −E

[
∂2 log fθ,X(θ,X)

∂θ∂θT

]
. (4)
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Indeed, in the case of random parameter θ, the optimum estimator θ̂(X) that minimizes the
left-hand side of (2) exists: it is the conditional mean of θ given the data X. Covariance
matrix of this conditional mean is, in general, a tighter bound on covariance of all other
estimators than the inverse of the Fisher information matrix in (4). A disadvantage of the
exact (tight) bound is that is may not be mathematically tractable, unlike the CRLB.

The technical assumptions of the CRLB in (3) to be valid are different than the assump-
tions of the classical CR inequality. First of all, the estimators θ̂(X) need not be unbiased,
their bias can be nonzero, and the bias conditioned by given θ,

B(θ) =

∫
(θ̂(X)− θ)fx|θ(x|θ)dX (5)

obeys the condition
lim

θm→∞
B(θ)fθ(θ) = lim

θm→−∞
B(θ)fθ(θ) = 0 (6)

for m = 1, . . . ,M .
The model of the parameter θ can also be hybrid: a part of θ can be deterministic and

another part random [12]. A typical example is a direction-of-arrival (DOA) estimation using
the sensor array. In this application it is assumed that there is a number of plane acoustic or
electromagnetic waves impinging on an array of sensors. The main task is the estimation of
directions of arrival of the plane waves, which are the main deterministic parameters of the
model. Usually, there are some other deterministic nuisance parameters as well, e.g. signal
amplitudes, phases, etc. On top of it, there might be random parameters that describe
random fluctuations of the sensor position and the orientation from their nominal position,
random fluctuations of the sensor gains, and others. Although the nuisance parameters need
not be estimated, absence of their knowledge and the presence of the random parameters
influence the estimation of the parameters of the interest and its accuracy. An example of
the analysis of the model uncertainty can be found in the papers [4] and [5].

2 Research Articles in the Dissertation

2.1 CRLB for the Adaptive Harmonic Retrieval [1]

The first paper [1] deals with the computation of CRLB for the adaptive harmonic retrieval.
Here, received data is modeled as a cisoid (complex-valued sinusoid) which has a frequency
that randomly drifts in the interval (0, 2π). Frequency increments are modeled as indepen-
dent Gaussian random variables with the zero mean and a small variance. In addition, the
data contain a complex-Gaussian random noise. The goal is, given variance of the frequency
increments and variance of the additive noise, to estimate the lowest possible mean square
error of a tracking algorithm estimating the instantaneous frequency. Here, “tracking” means
a recursive estimation of the instantaneous frequency at time t given the history of the signal
up to time t. The estimated parameter (the instantaneous frequency) is random, therefore
a Bayesian CRLB is derived. We computed the bound in a closed form and showed that
the bound is attained by certain frequency tracking algorithms [17]. These algorithms were
proved to be statistically efficient in this way.

2.2 CRLB for Nonlinear Filtering [2], [3]

The second paper [2] (from 1998) is a generalization of the former one to a very general
scenario of nonlinear filtering. This paper became very popular in the system identification
community and received hundreds of citations in SCI. Assume that we are given a nonlinear
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system represented by a state vector xn which evolves in time through a possibly nonlinear
function fn as xn+1 = fn(xn, wn), where wn is a random Gaussian noise that enters in
the state evolution equation. The function can be, for example, linear or simply additive,
xn+1 = xn + wn. The challenge is that we cannot observe the state xn directly but only
through a nonlinear observation, as yn = gn(xn, vn), where gn is nonlinear function and vn
is another random noise that enters in the system. In the special case, the latter noise can
be additive, yn = gn(xn) + vn. The goal is to derive a CRLB on covariance matrix of errors
x̂n − xn where x̂n is a function of the observations up to time n, i.e. . . . yn−2, yn−1, yn. In
this paper, the bound is derived in a recursive form. It has been found useful in many
applications. The nonlinear filtering algorithms are often realized through particle filters.
As the computational power of modern computers grows, the particle filters become more
popular. It is, however, not known a priori, how many particles have to be used to get close
to the best possible performance. The CRLB helps to answer this question.

The following paper [3] by Královec, Šimandl and Tichavský derives a similar CRLB for
nonlinear prediction and smoothing. Given the measurements . . . yn−2, yn−1, yn, the goal is
to estimate xn+m with m > 1 (prediction) or xn−m (smoothing).

2.3 CRLB for DOA Estimation Using a Single Hydrophone [4]

An application of CRLB in underwater statistics is studied in [4]. In particular, an accuracy
of Direction-of-Arrival (DOA) estimation using a single vector hydrophone is analyzed. A
vector hydrophone is composed of two or three spatially co-located but orthogonally oriented
velocity hydrophones plus another optional co-located pressure hydrophone. It is no longer a
tracking scenario, but a stationary scenario with an unknown deterministic parameter. The
CR bound is used to compare performance of complete and incomplete vector hydrophones.
In the latter case, one or more velocity hydrophones are absent. The analysis helps to
quantify the tradeoff between the estimation accuracy and complexity (cost) of the hardware.

2.4 CRLB for DOA Estimation Using a Towed Array [5]

The fifth paper [5] studies the accuracy of the DOA estimation using an array of classical
hydrophones that are placed on a cable towed by a vessel. The shape of the array is subject to
random deformations due to the towing vessel′s varying speed and transverse motion, by the
array′s non-neutral buoyance and nonuniform density changes, and by hydrodynamic effects
plus oceanic swells and currents. The inaccuracy of the array geometry is modeled using
physical considerations. In particular, transverse deformation/vibration of a thin flexible
cylinder, towed by a vessel, is known to obey a fourth-order partial differential equation
known as the Paidoussis equation. This equation describes the mechanical propagation of the
array-deformation down the array′s length. The equation was used to derive the covariance
matrix of random deviations of the array from its nominal position, which is further used in
expressions for CRLB for the DOA estimation using a randomly curved array.

2.5 CRLB for Independent Component Analysis [6]

The sixth paper [6] is related to the independent component analysis (ICA) and the blind
source separation. In the paper we study the task of analysis of an N×N linear mixture of N
independent non-stationary signals. Each of the signals is modeled as a series of independent
realizations of a random variable having a non-Gaussian distribution 1. The task is to find

1To be accurate, at most one signal in the mixture is allowed to have Gaussian distribution, the other
signals must be non-Gaussian.
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a mixing matrix of the size N × N that represents the mixture without any other prior
information about the separated signals. In the literature several popular algorithms to solve
the ICA problem were proposed. In the paper, one of the most successful ones (FastICA) is
studied and its performance is analyzed in terms of the Interference-to-Signal Ratio (ISR)
of the separated signals. In the same paper, the theoretical CRLB-based bound on accuracy
of the separation is derived and compared to performance of FastICA. The performance and
the CRLB depend namely on the probability distributions of the separated signals and their
length. The analysis was used to propose a novel variant of FastICA, called EFICA [18].

2.6 CRLB for Canonical Polyadic Tensor Decomposition [7]

The seventh paper [7] is related to a different area (tensor decompositions), but can be related
to the ICA model in a sense. The statistical estimation problem is related to stability of
canonical-polyadic (CP) tensor decomposition. The word “tensor” here means a rectangular
array of real or complex numbers. In general it can have a size d1 × d2 × . . .× dN , where N
is called the tensor order. Each element of the tensor has N indices, say ti1,...iN . The goal of
the CP decomposition is to find the smallest possible integer R (called rank of the tensor)
and N matrices (called factor matrices) Aj, j = 1, . . . , N of the size dj × R with elements
aj,i,r, i = 1, . . . , dj, r = 1, . . . R, and R scalars λ1, . . . , λR such that

ti1,...iN =
R∑
r=1

λra1,i1,r · . . . · aN,iN ,r

for all ij = 1, . . . , dj, j = 1, . . . N . Without any loss in generality it can be assumed that all
columns of all factor matrices have the unit Euclidean norm.

The CP decomposition, also known under the acronyms PARAFAC of CANDECOMP,
was found useful namely in several applications as chemometrics, biomedical signal process-
ing, and others.

The CRLB derived in the paper helps to study the stability of the CP decomposition.
It reveals how the small perturbations of the tensor elements translate in the accuracy of
the factor matrices’ estimates. The result has led to derivation of a novel CP decomposition
algorithm for high-order tensors, see [19].

3 Conclusions

The presented dissertation summarizes author’s contribution to different areas of statistical
signal processing in the last twenty years. The underlying theme linking the collection of
seven publications that comprise the dissertation is the computation of the Cramér–Rao
bound. The computation of the bound has helped to understand the relation between the
available data and its information content about estimated parameters of the models in
the sinusoidal frequency estimation with slowly varying parameters, in nonlinear filtering,
smoothing and tracking, in the underwater DOA estimation, in the independent component
analysis and in the canonical polyadic tensor decomposition. A high interest of the research
community in these areas is proved by a significant impact of the presented collection of
articles, which is about 589 citations according to the Thomson Reuters citation index (with
self–citations included, for simplicity).
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[18] Z. Koldovský, P. Tichavský, and E. Oja, “Efficient Variant of Algorithm FastICA for
Independent Component Analysis Attaining the Cramér-Rao Lower Bound”, IEEE Tr.
Neural Networks, vol. 17, no. 5, pp. 1265–1277, September 2006.
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Posterior CramCr-Rao Bound for 
Adaptive Harmonic Retrieval 

Petr Tichavslj 

Abstract-The problem of adaptive parameter estimation for a single 
nonstationary noisy cisoid, where the sinusoidal frequency evolves ac- 
cording to Gaussian random walks, is studied. The lower hound on the 
minimum mean-square estimation error, which was derived by van Trees, 
is evaluated for the problem. It is shown that two estimation methods 
attain this lower bound. 

I. INTRODUCTION 
The problem of recursive estimation of parameters (frequencies 

and amplitudes) of multiple sine waves in noise has received a great 
deal of interest in the literature. The problem can be altematively for- 
mulated as adaptive line enhancement of the signal or as elimination 
of a sinusoidal interference. Several algorithms for solving this task 
have been derived, and their properties have been analyzed. The most 
important procedures include the adaptive notch filter (ANF) in many 
variants and modifications; cf. [l], [2] and the references therein. 
Another method is the multiple frequency tracker (m) [3], [4]. 

For stationary signals, the minimal variance of any unbiased 
estimator is given by the Cramtr-Rao lower bound (CRB); cf. [5]. In 
particular, for the above-mentioned estimation problem, the bound is 
proportional to l /n3 and l / n  (where n denotes the size of the data 
sample) for the frequency and the amplitude estimates, respectively; 
cf. [6]. Thus, for a statistically efficient recursive estimator, the 
variance of the estimation error tends to zero as n -+ m, implying 
that the update in the parameter estimates tends to zero or, loosely 
speaking, that the algorithm's gain tends to zero. 
in on-line applications, however, it is often desired that the gain 

be nonzero in order to preserve the algorithm's tracking ability under 
sudden parameter changes or drift in the measured data. In these 
cases, the variance of the parameter estimates depends on the effective 
memory length of the algorithm, and thus, for sufficiently long data, 
it no longer depends on the actual length of the signal processed. 
Some general results on the asymptotic distribution of exponentially 
weighted prediction error estimators are given in [7]. The tracking 
scenario, where the drift in the parameter vector is modeled as a 
random walk, is studied in [8]. 

The case of slow drift in the sinusoidal amplitudes and frequencies 
is highly relevant in many signal processing applications, where 
the classical cisoid-in-noise model is too conservative to accurately 
describe the underlying data generation process. Some analytical 
expressions for the variance of the frequency estimation error for 
different algorithms have, among other things, been derived in [4], 
[9], and [lo]. In common for the variance expressions in the papers 
cited above is that the frequency estimation variance consists of two 
terms: one corresponding to the additive measurement noise and one 
term related to the random walk modeled frequency drift. A question 
of considerable theoretical interest concems the lower bound on the 
estimation accuracy for this, problem. 

Manuscript received June 20, 1994; revised November 28, 1994. This work 
was supported by Grant 201/93/0233 of the Grant Agency of the Czech 
Republic. The associate editor coordnating the review of this paper and 
approving it for publication was Dr. R. D. Preuss. 

The author is with Institute of Information Theory and Automation, Prague, 
Czech Republic. 

IEEE Log Number 9410289. 

The assumption that the parameters of the signal evolve according 
to a random walk basically means that these parameters are con- 
sidered to be random. This implies that the classical CRB is not 
applicable in this case. Fortunately, a lower bound on the minimum 
mean-square error in estimating a random parameter also exists; see 
pp. 72-73 of [5]. Since the bound has, in principle, similar form 
to the standard CRB, we call it, for easy reference, the posterior 
Cram&-Rao bound (PCRB). 

In this correspondence, we consider a signal consisting of a single 
nonstationary complex-valued sinusoid (cisoid), embedded in additive 
Gaussian white noise with zero mean and a known variance. It 
is assumed that the instantaneous frequency of the cisoid evolves 
according to random walk, namely, that the increments in the 
frequency are independent Gaussian random variables with zero mean 
and known variances. In addition, it is assumed that the sinusoid has 
a known constant magnitude, initial frequency, and phase. For this 
model, we calculate the PCRB for estimation of the instantaneous 
frequency at time instant n > 0 and find limn+m PCRB, which we 
call LPCRB. 

The LPCRB is compared with the analytical expression characteriz- 
ing the large sample performance of the ANF and MFT in estimating 
the slowly varying frequency in the given model (cf. [4]). It is shown 
that both the procedures attain the LPCRB so that they achieve the 
minimum attainable mean square estimation error. 

11. POSTERIOR CRAMBR-RAO BOUND 

In the classical parameter estimation, it is common to consider 
an observation (random) vector x = (z lr  . . .  , zn)T with joint 
probability density p x ~ o ( X I O ) ,  where 8 = (81, ... ,Or)T is the 
parameter vector. In this correspondence, it is assumed that 8 is a 
random vector with given a priori probability function (e), as in 
the Bayesian statistics. Then, the joint probability function of the pair 
(x, 8 )  is given a s p x , s ( X ,  0)  = p X l e ( X I 0 ) p e ( O ) .  

Consider theAtask of estimating the parameter 8 by means of a 
function of x, 6' = g(x), and assume first that 8 is a scalar r = 1. 
It is well known, cf. [5], that the best estimator of 8 in the sense of 
the least mean square error is the conditioned expectation E(8 I x). 
In other words, var {E( 8 I x)} is the universal lower bound for mean 
square error of estimating 8 by functions of x. 

However, it may occur that the estimator E(8 I x) is represented 
by a complex expression, and thus, it may be difficult to calculate its 
variance. The alternative lower bound, which was derived in [5] and 
denoted here by PCRB, can sometimes be more easily evaluated. 

In the case of the multiple parameter estimation (r > 1) the bound 
has the form 

(1)  V A E { [g(x) - 8][g(x) - e ] ' }  2 J-' 

where J is the T x r matrix with the elements 

and the inequality in (1) means that the difference V - J-' is a 
positive semidefinite matrix. Note that J is a counterpart to the 
Fisher information matrix; for easy reference, it is called the posterior 
information matrix. The matrix can be decomposed into two parts: 

J = J o + J p  (3) 
where JD stands for the standard Fisher information matrix, repre- 
senting the information obtained from the data, and the matrix JP 

1053-587X/95$04.00 0 1995 IEEE 
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represents the a priori information matrix 

It is also worth noting here that, in contrast with the standard CRB, 
g(x) need not be an unbiased estimator of 0. 

The full statement of the theorem follows. 
Theorem I :  Let 6' be a random r-dimensional vector, and let x, 

which is the observation vector, have the joint probability function 
px,e(X,  0) .  Let 0 = g(x) be an arbitrary estimator of the parameter 
0. Assume the following 

Assumption A1 implies that the evolution of the sinusoidal fre- 
quency is described as a random walk with increments of given 
variance. Assumption A2 is not too restrictive if one is interested 
in estimating the signal parameters at time instants t >> 0; since the 
frequency is time varying, the exact knowledge of pt and wt for t = 
0 is irrelevant for large t. 

The log-likelihood function for our model is given as 

The matrix J, which is defined in (2), exists and is regular. 
(dp,, e(X,  @)/a@,) is absolutely integrable with respect to 
X and 0 for all i = 1. ... , T .  

(d2px,s(X,  @)/a@, a@,) is absolutely integrable with re- 

where C is a constant that does not play a role in further calculations.' 
Note from (1 I)  that the sinusoidal phase at the time instant t can 

be written as 

spect to X and 0 for all i ,  j = 1, . . .  , r .  
The conditional expectation of the error, given X ,  is 

for i = 1, ... , r .  
Then, the inequality ( I )  holds. 

(16) 

for k,  k' = 2, . . . , n- I,  where 6 k  k /  is the Kronecker delta function, 
and 

1 + - T k k '  
Proof: See [ 5 ] .  w 

In the special case, when only the ith component of the parameter Y2 
vector 0 is estimated, 0, = gt(x), the PCRB, similarly to the standard 
CRB, is given as 

E[(gt(x) - et)'] 2 [J-']tz (9) 

where [ . I t 1  denotes the ( i ,  i)th element. 

Similar expressions are obtained for k ,  k' = 1 and k ,  k' = n,  
but they are omitted for brevity. Taking the expectations of the 
second-order derivatives, we get the following result. 

problem (IOH13), under assumptions A1 and A2, is given by 

HI. CALCULATION OF THE PCRB 

of a single noisy cisoid with slowly varying frequency. The signal 
In this section, the PCRB is calculated for the estimation problem 

Proposition The posterior information matrix for the estimation 
model has the form 

yt = mOe*'* + ut t = 0, 1. 2, . . . , n (10) 

where mo is the magnitude, pt is the instantaneous phase of cisoid 
at time instant t ,  and { u t }  is the noise. The instantaneous frequency 
is defined as the one-step increment of pt 

(11) Wt = pt - p t - 1  t = 1, 2, . . . , n. 

Put 

e t  = dt - wt-1 t = 1, 2, ... , n (12) 

1 nt 
U' 

J, = 2 -H, + - G, 
Y2 

where H, and G ,  are the (n  x n) matrices 

1 n n - 1  n - 2  ... 
n - 1  n - 1  n - 2  ... 1 

1 

1 1 ... 1 1 
and assume that 1 -1 0 . . .  0 

G n  = [ -i '.. 0 
random variables with zero mean values and variances U' and y2, 
respectively; {e t}  is Gaussian, and {ut} is complex circular Gaussian. 

A2: The initial parameters of the signal, i.e., PO, d o ,  and mo are 

... -1 known constants. 
The main problem is to estimate the parameter vector 

Al: { u t }  and {et} are independent sequences of independent -1 2 -1 . . .  0 0  

(20) 

0 ... 2 -1 

' Since wJ E ( -K, r], the Gaussian assumption imposed on e t  and used in 
0 = (w1, ... . w,) (13) 

on the base of the data x = (yl, . . .  . Y , ) ~ .  (14) is realistic only for yz  << 1. 

11
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Fig. 1. Illustration of the convergence of the PCRB (&) (solid lines), to the 
corresponding limit PCRB (dotted lines), for SNR = 0 dB and -, = 0.1. 0.01 
and 0.001, respectively (from the top down). 

In particular, for estimating the nth instantaneous frequency, we 
obtain 

Note that the same PCRB can be obtained for the more general model 
yt = mtezv t  + ist, t > 0, where the magnitudes {mt} are i.i.d. 
Gaussian r.v.’s, independent of { ~ t }  and {et}, if E{m:} = mi. 
This observation is consistent with the idea of estimating frequency 
only from the phase of the data [11]. 

The main contribution of this correspondence is the analytic 
formula for linin-m PCRB (Gn), i.e., LPCRB (&) .  

Proposition 2: The PCRB for the estimation of in the model 
(10 )-(13), under assumptions A1 and A2, has the limit 

where 

Proof (Outline): The right-hand side of (21) is rewritten as 

det J n . ~ . n - - l  

det Jn  [(Jn)-’]nn = 

where J, 1 ,-I is the left-upper ( l a - 1 ) x  (n-1) submatrix of J,. 
Using some elementary row and column operations, the determinants 
in (25) can be written as determinants of five-diagonal matrices, and 
finally, by expansion with respect to their last column or row, they 
can be rewritten into a recursive fashion; analysis of the obtained 
recursions together with (25) implies the statement. See [12] for 
details. 

It can be seen from the proof of the proposition that the same 
LPCRB would be obtained under the assumption that po and do are 
Gaussian random variables, independent of {e, } and { 7 1 , ~  }. 

Iv. EFFICIENCY OF TWO METHODS 
The algorithms MFT and ANF that solve the estimation prob- 

lem (lOt(13) for multiple cisoids have been studied in [4]. The 

algorithms have been analyzed for a single cisoid by aid of an 
approximating linear filter (ALF) technique, assuming high signal- 
to-noise ratio (SNR = mila’ >> l), slow evolution of the signal 
parameters (r2 < 1), and a proper initialization of the procedures. 
It has been shown that for both methods 

u2 (1 - X ) ( 1 -  p y  
lim E{(G“ - LJ,)’} = - 

n-oo mi 1 + 3 X + p ( l - X )  

(26) 
p2 (1  - A)’ + 2 X ( p  + X - 2pX)  

+ y2 [ 1 +  3X + p ( 1 -  X ) ] ( l  - X ) ( l -  p )  

where X and p are two forgetting factors in the MFT or the pole 
contraction factor and forgetting factor in the ANF A. p E (0, 1). 
Further, it can be proved that (26) achieves its minimum value for 

where 

K = -U1 + Jz (29) 

and w was defined in (23). The minimum value of (26) is 
2 K  lim E { (&, - wn )’ I X = X r .  p = pr  } = y -. (30) 

Comparing the last result with (22) implies that the MFT and the ANF 
are statistically efficient estimators of the slowly varying sinusoidal 
frequency under the assumptions of the ALF approximation. 

n-m W 

V. CONCLUSIONS 
The PCRB for the problem of estimation of instantaneous fre- 

quency of a single nonstationary cisoid in noise has been calculated. 
It has been assumed that the evolution of the frequency is modeled 
by a Gaussian random walk and that the additive noise is Gaussian 
and white. We showed that the two estimation procedures (the MFT 
and the ANF) can, under certain assumptions, asymptotically attain 
this lower bound. 
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Identification of Quadratic Volterra 
Systems Driven by Non-Gaussian Processes 

A. M. Zoubir 

Abstract- A nonlinear and time-invariant system representable by a 
Volterra series up to second order is considered. Closed-form expressions 
for the generalized transfer functions of first and second order are derived 
for non-Gaussian stationary input processes whose trispectrum vanishes. 
It is shown that the parameters obtained are optimum in the mean 
square sense. Once the system is identified, a closed-form expression for 
the quadratic coherence is derived. This expression simplifies to well- 
known results when the system is linear or its input is Gaussian. The 
quadratic coherence is validated using simulated data as input to a known 
second-order Volterra filter with known statistic. 

I. INTRODUCTION 

The Volterra series provides an important type of representation 
for nonlinear models and has been used in many applications. In 
this representation, a nonlinear system is characterized by a set 
of functions called the Volterra kernels, which are determined by 
“cross-correlating” the system response with its input. A difficulty 
encountered in this approach is to find simple analytical expressions 
for the Volterra kernels in terms of the cumulants or equivalently for 
the generalized transfer functions in terms of higher order spectra. 
There is one special case when one can derive a generalization of the 
basic result for linear systems. This is the case where the Volterra 
series contains just one term of any order and the input is a Gaussian 
process, as studied in [l]. In many applications, it is more desirable 
to identify a system with a non-Gaussian input. 

The purpose of this paper is to derive analytical expressions for 
the generalized transfer functions of Volterra filters of second order 
in terms of higher order spectra for a class of non-Gaussian input 
processes. This class consists of stationary processes whose fourth- 
order cumulant function vanishes. An outline of the paper follows. 

In Section II, a formulation of the problem is given. Section III 
discusses the identification of quadratic Volterra filters. Analytical 
expressions for the generalized transfer functions of first and second 
order are given. It is shown that the derived parameters are optimum 
in the mean square sense. In Section IV, a closed-form expression 
for the quadratic coherence is given. In Section V, we discuss the 

Manuscript received December 21, 1992; revised September 27, 1994. The 
associate editor coordinating the review of this paper and approving it for 
publication was Prof. Douglas Williams. 

A. M. Zoubir is with the Signal Processing Research Centre, Queensland 
University of Technology, Brisbane 44001, Australia. 
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Fig. 1. 

estimation of the generalized transfer functions and the quadratic 
coherence. Simulation results are illustrated and discussed before 
concluding. 

Signal flow diagram of the considered nonlinear system. 

II. PROBLEM FORMULATION 
Let z (n )  be a zero-mean stationary random process with discrete 

time parameter n = 0, fl, =tZ,. . . . Assume the process y(n) to be 
generated by 

n 1 Z - m  

m m  

+ hz(n - n1, n - n z ) z ( n 1 ) z ( n z )  + 4 n )  
n1z-m nz=-oo  

(1) 

where E(.) is zero-mean stationary modelling noise, and ~ ( n )  and 
~ ( n )  are independent. For the description of the time-invariant 
filter, we have used the notations h l ( n 1 )  and hz(nl,n2), ~ . l , n z  = 
0, fl, f 2 , .  . . for the real Volterra kernels of first and second order, 
respectively. Without loss of generality, we assume that hz (nl , nz) 
is symmetric in its arguments. 

A signal flow diagram of the model is given in Fig. 1, 
where H l ( w )  = C~=--cOhl(nl)e-3“n1 and Hz(w,A)  = 
Cnl=--ooC&--cOh2(nl, n2 )  e--3(wn1+XnZ) are, respectively, called 
the generalized linear and quadratic transfer functions. 

By identification of the time-invariant second-order Volterra filter, 
we mean determination of its generalized transfer functions H1 ( w )  
and HZ (w , A )  from second- and third-order spectra of the input and 
output series. The identification of such a filter has been studied 
by Tick [6], who derived closed-form expressions for H l ( w )  and 
H2 (w , A), assuming z( n)  to be a Gaussian process. Kim and Powers 
[4] have concentrated on the non-Gaussian case. They propose a 
digital method based on a linear regression derived from (1) that 
is solved with respect to H l ( w )  and H z ( w , A )  at a set of discrete 
frequencies. 

In this correspondence, we derive closed-form expressions for the 
system describing generalized transfer functions H1 ( U )  and H z ( w ,  A) 
in terms of second- and third-order spectra of the input and output 
process for non-Gaussian stationary zero-mean input processes whose 
fourth-order cumulant function vanishes. Processes with this property 
may arise in practice, when they are generated as the sum of 
independent processes whose fourth-order cumulants cancel. Another 
example is when the process is singly or doubly truncated Gaussian 
with a parameter that reduces the fourth order cumulant to zero. In 
other applications, we may assume a vanishing trispectrum because 
the shape parameter of the distribution is large and fourth-order 
cumulants fall faster to zero than third-order cumulants, such as in 
the Gamma or K-distributions often used in radar signal processing. 

00 
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Posterior Craḿer–Rao Bounds for
Discrete-Time Nonlinear Filtering

Petr Tichavsḱy, Member, IEEE, Carlos H. Muravchik,Member, IEEE, and Arye Nehorai,Fellow, IEEE

Abstract—A mean-square error lower bound for the discrete-
time nonlinear filtering problem is derived based on the Van
Trees (posterior) version of the Craḿer–Rao inequality. This
lower bound is applicable to multidimensional nonlinear, possibly
non-Gaussian, dynamical systems and is more general than the
previous bounds in the literature. The case of singular conditional
distribution of the one-step-ahead state vector given the present
state is considered. The bound is evaluated for three important
examples: the recursive estimation of slowly varying parameters
of an autoregressive process, tracking a slowly varying frequency
of a single cisoid in noise, and tracking parameters of a sinusoidal
frequency with sinusoidal phase modulation.

Index Terms—Adaptive estimation, Kalman filtering, nonlinear
filters, time-varying systems, tracking filters.

I. INTRODUCTION

DISCRETE-TIME nonlinear filtering or the associated
problem of adaptive system identification arise in various

applications such as adaptive control, analysis, and prediction
of nonstationary time series. As is well known, the optimal
estimator for this problem cannot be built in general, and it
is necessary to turn to one of the large number of existing
suboptimal filtering techniques [1]. Assessing the achievable
performance may be difficult, and we have to resort to simula-
tions and comparing proximity to lower bounds corresponding
to optimum performance. Lower bounds give an indication of
performance limitations, and consequently, they can also be
used to determine whether imposed performance requirements
are realistic or not.

In time-invariant statistical models, a commonly used lower
bound is the Cram´er–Rao bound (CRB), given by the inverse
of the Fisher information matrix. In the time-varying systems
context we deal with here, the estimated parameter vector has
to be considered random since it corresponds to an underlying
nonlinear, randomly driven model. A lower bound that is
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analogous to the CRB for random parameters was derived in
[11]; this bound is usually referred to as the Van Trees version
of the CRB, or posterior CRB (PCRB) [16]. Some properties
of the PCRB are summarized in Section II.

Several lower bounds for nonlinear dynamical systems have
appeared in the literature; see the overview in [6]. However,
the continuous-time case has received heavy emphasis but not
the discrete-time case, which is of greater practical impor-
tance. Bobrovsky and Zakai [2] were the first to apply the
Craḿer–Rao theory to scalar discrete-time systems. The bound
was later improved and generalized to the multidimensional
case by Galdos [3]. Both of these bounds were obtained by
comparing the information matrix of the original system with
an information matrix of a suitable Gaussian system. The
bound in [3] is already quite general, but it still has some
limitations (see the discussion in [6]), i.e., the assumption that
the dimension of the system and measurements are identi-
cal. Recently, the approach by Galdos has been generalized
for nonlinear th-order autoregressive processes driven by
additive Gaussian noise with state-dependent gain [4].

In Section III of this paper, a novel and simple derivation of
the posterior CRB for the discrete-time multidimensional non-
linear filtering problem that avoids any Gaussian assumptions
is presented. The derivation is obtained from first principles
and differs from other approaches that instead consider com-
parison of the original nonlinear system with an appropriate
linear Gaussian system. We present an example of a linear
Gaussian system (which is different from those in [2] and
[3]) that has the same associated information matrix as the
original system. In Section IV, the lower bound is extended
for a frequently occurring case of nonlinear filtering, where
the conditional distribution of the state one step ahead, given
the current state, is singular. Note that a special case of a
similar extension was proposed in [3]. Section V illustrates an
application of the bound for three important examples:

• recursive estimation of slowly varying parameters of an
autoregressive process;

• tracking of a slowly varying frequency of a single cisoid
in noise (a new alternate derivation of the lower bound
in [16]);

• tracking parameters of a varying frequency that is mod-
ulated by a sinusoid [17].

Conclusions are drawn in Section VI.

II. PROPERTIES OF THEPCRB (REVIEW)

Let represent a vector of measured data, letbe an -
dimensional estimated random parameter, let be

1053–587X/98$10.00 1998 IEEE
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the joint probability density of the pair , and let be
a function of , which is an estimate of. The PCRB on the
estimation error has the form

E (1)

where is the (Fisher) information matrix with the
elements

E (2)

provided that the derivatives and expectations in (1) and (2)
exist. The superscript “” in (1) denotes the transpose of a
matrix, and the inequality in (1) means that the difference

is a positive semidefinite matrix. The proof given in
[10] or [11] holds under the additional condition of

(3)

where is the estimation bias conditioned by , and

(4)

Let and be operators of the first and second-order partial
derivatives, respectively

(5)

(6)

Using this notation, (2) can be written as

E (7)

Since , it can easily be seen
that can be decomposed into two additive parts:

(8)

where represents the information obtained from the data,
and represents thea priori information

E (9)

E (10)

provided that the expectations in (9) and (10) exist. Note that
is an expectation of the standard Fisher information matrix

over thea priori distribution of .
An alternative expression for the information matrix can be

derived from the equality .
Since is an integral of over , it does not
depend any longer on ; therefore, we have

E (11)

For example, if the posterior distribution ofconditioned on
the data vector is Gaussian with mean and a (regular)
covariance matrix

(12)

holds, where denotes a constant independent of. Then,
the information matrix in (11) reads

E (13)

If is estimated by E , then (1) is satisfied with
equality. This is exactly the case for the Kalman filter when
performing the task of linear filtering.

Assume now that the parameteris decomposed into two
parts as , and the information matrix is
correspondingly decomposed into blocks

(14)

It can easily be shown that the covariance of estimation of
is lower bounded by the right-lower block of , i.e.,

E

(15)

assuming that exists. In the following, the matrix
will be called the information submatrixfor

parameter .

III. A L OWER BOUND FOR THE

NONLINEAR FILTERING PROBLEM

Consider the nonlinear filtering problem

(16)

(17)

where

system state at time;
measurement process;

and independent white processes (i.e., se-
quences of mutually independent random
variables or vectors);

and (in general) nonlinear functions.

The functions and may depend on time . Further
assume that the initial state has a known probability density
function . Let the dimension of the states be .

Equations (16) and (17) together with determine
unambiguously the joint probability distribution of

and for an arbitrary [2]

(18)

In (18) as well as in the sequel, ’s refer to (uncondi-
tional and conditional) probability densities of the variables
depicted in the argument of’s. The conditional probability
densities and follow from (16) and (17),
respectively, under suitable hypotheses.

Let be the information matrix of
derived from the above joint distribution. The problem that
we wish to solve in this section is the computation of the
information submatrix for estimating , which is denoted ,
which is given as the inverse of the right-lower block of

. The matrix will provide a lower bound on the

15
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mean square error of estimating. In the sequel,
is denoted by for brevity.

Decompose as and corre-
spondingly as

E E

E E
(19)

provided that the derivatives and the expectations exist. Com-
parison of (16) and (20) gives

(20)

Thus, computation of the matrix involves either
calculation of the inverse of matrix
or inverse of the full matrix .

The following proposition gives a recipe for computing
recursively without manipulating large matrices such asor

. In particular, an efficient method for computing the
limit of for follows from the recursion.

Proposition 1: The sequence of posterior informa-
tion submatrices for estimating state vectors obeys the
recursion

(21)

where

E (22)

E (23)

E (24)

E

E (25)

Proof: The joint probability function of and
can be written as

(26)

Using (26) and the notations in (19) and (22)–(25), the
posterior information matrix for can be written in block
form as

(27)

where 0’s stand for zero blocks of appropriate dimensions.
The information submatrix can be found as an inverse

of the right-lower submatrix of

(28)

Using the definition of in (20), we obtain the desired
formula (21).

Note that the recursion in (21) involves computations with
matrices of dimension . The initial information subma-
trix can be calculated from thea priori probability function

E (29)

A few remarks follow to elucidate special cases.

A. Additive Gaussian Noise

Assume that the nonlinear filtering problem in (16) and (17)
has the form

(30)

(31)

and that the noises and are Gaussian with zero
mean and invertible covariance matrices and , respec-
tively. From these assumptions, it follows that

(32)

(33)

where and are constants, and

E (34)

E (35)

E

(36)

The well-known solution of the problem in the linear case
[with linear functions and in (30) and (31)] is the
Kalman filter. This is an algorithm that computes parameters
of the conditional distribution of the state given the data

. The distribution is Gaussian, and its mean and covariance
matrix are usually denoted and , respectively. It can
easily be shown that the recursion (21) for is identical to
those that are usually derived for from the Kalman filter
equations [1].

In order to compare the result (21) with the PCRB compu-
tations in [2] and [3], we find matrices , , , and
such that the linear system

(37)

(38)

has the same information matrix as the original nonlinear
system; in (37) and (38), and are independent white
Gaussian noises with zero means and covariance matrices
and , respectively. The matrices , , , and can
be determined by comparing the matrices , , and
of the original system, which are obtained from (34)–(37) to
those of the linear system in (37) and (38), yielding

(39)

(40)

(41)

16
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One possible solution of the above system of equations is

(42)

(43)

(44)

(45)

where denotes the square root of a positive semidefinite
matrix , assuming that the requisite inverses in (42)–(45)
exist. Note that the above linear filter is different from those
proposed in [2] and [3].

B. A Generalization

Consider the generalization of the nonlinear system in (16)
and (17) as

(46)

(47)

where is an integer. It can easily be seen that for the
generalized system, the whole derivation of (21) can be
repeated en masse, with only two small differences: First,
in the initialization, it has to be assumed that
are known constants and second that
in (26) cannot be reduced to but merely to

. The latter term will also
replace the former one in (25).

C. Time-Invariant Solutions

Now, assume that the functions and are time
invariant (independent of ). It can easily be seen that the
matrices also do not depend on. It can be
shown that for , the matrix converges to a matrix

, which is given as a solution to the equation

(48)

Note that (48) is a discrete-time algebraic Riccati equation. A
more common form of the Riccati equation is obtained if the
recursion (21) is equivalently written as

(49)

which can be easily proved by simple algebraic manipulations.
Then, put .

Two popular methods for solving the Riccati equation are
derived in [5] and [8], respectively; for a more comprehensive
survey, see [7]. In addition, note that there is an available
software for solving the equation in Matlab, namely, a function
DARESOLV or an older function DLQR.

IV. A FREQUENT SINGULAR CASE

Computation of the information submatrix , as described
in the previous section, fails if the conditional distribution
of , given is singular, and therefore, the probability
density is not defined. In the case of the

additive Gaussian noise considered in the previous section,
this happens when the matrix is singular. In order to
deal with these cases, consider the following modification
of the original problem.

Assume that the state vector can be written in block
form as

(50)

where has the length , , with . The
filtering is described by the set of equations

(51)

(52)

(53)

where , , and are (in general) nonlinear functions.
Again, the task is to calculate the information submatrix
for . The partitioning restriction (51)–(53) of the problem
is somewhat general and includes, among others, the case

, which means that the second part of the state
vector is constant in time, and it can be considered for use
when there are unknown constant parameters in the model.
Note that in [3], the case was considered whenis only a
function of .

In this section, we present first an explicit solution—a
recursive equation for —for a special case of the system
(51)–(53) with a linear function and then a conceptual
solution for general .

Case 1—Linear :
Proposition 2: Consider the linear filtering in (51)–(53),

and assume that the function is linear so that (52) can
be written as

(54)

In addition, assume that is invertible for all . Put

... (55)

Let be an information matrix derived from the
joint probability density , and let and

be the information submatrices for and for ,
respectively. Then, and obey the recursions

(56)

(57)
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where

(58)

(59)

E (60)

E (61)

E (62)

E (63)

E (64)

E (65)

and

(66)

provided that the above derivatives and expectations exist. In
(59), the ’s and 0’s stand for identity and zero matrices of
appropriate dimensions.

Proof: See the Appendix.
Note that the conditional probability function

in (66) is obtained from by

substituting for from (54).
A stationary solution for would be obtained by inserting

for and . Note that the resulting equation no longer
has the form of a Riccati equation, unlike (48) in the previous
section.

For example, consider the above-mentioned case when
is a constant unknown parameter. Comparing the equation

with (54), we have , , and

, where 0’s and ’s stand again for zero and identity
matrices of appropriate dimensions. Utilizing the special form
of the matrix in (59), from (56) and (57), the recursions

(67)

(68)

(69)

can be derived. Note that in the stationary case, where
do not depend on, the matrix sequence

converges for to the solution of the Riccati-type of
equation

(70)

The sequence either converges to a constant matrix

(71)

or diverges to infinity when at least one of the eigenvalues of
has magnitude larger or equal to one.

The matrices in (69) grow without any bound in general.
If this happens, then the limit PCRB for estimating for

is the same as if were known. Indeed, these results
can be expected because if the data bear any information about
the parameter , this information is accumulated as the time

goes to infinity.
Another example of application of Proposition 2 is given in

Example 2 in the next section.
Case 2—Nonlinear : The main idea for handling the sin-

gular case of the nonlinear filter in (51)–(53) is to “regularize”
the filter, e.g., to replace (52) by a perturbed equation

(72)

where is a sequence of pairwise independentGaussian
random vectors with zero mean and covariance matrix,
independent of and , with close to 0. For the
modified system, it is possible to apply the result (21) from
Section III.

Let ’s and E denote probability densities and the
expectation operator induced by the perturbed system (51),
(53), and (72). Note that

(73)

where is determined by (51), and

(74)

where is a constant. The matrices for the
regularized system can be written as

(75)

where is given as an E-expectation of the second-

order derivative of w.r.t. and , as
in (22)–(25), contains, in addition, an E-expectation
of the second-order derivative of w.r.t.

, and , are given as an E-expectation of

the same derivatives of . In particular

E (76)

E E (77)

E E

E

(78)
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where the arguments of are omitted for brevity. The infor-
mation submatrix for the original system will be obtained from
the result (21) in the limit

(79)

An example of application of (79) is given in Example 3 in
the following section.

V. EXAMPLES

Example 1—AR Process with Time-Varying Parameters:
Consider a scalar-valued random process and introduce
the notation

(80)

Let obey the recursion

(81)

where is a vector of instantaneous autoregressive coef-
ficients at time instant , and is a Gaussian white noise
with zero mean and variance . Further, assume that has
Gaussian random increments

(82)

where is white, independent of , zero mean, and
has covariance matrices .

The system (81) and (82) has the form of (46) and (47). The
information submatrix can be obtained by a straightforward
application of (21) and (34)–(37). The result is

(83)

(84)

where

E (85)

so that

(86)

Note that the optimum estimate of from the data in
the mean-of-square sense is the Kalman filter; the conditional
distribution of given is Gaussian. Let and
denote parameters of this distribution, namely, the mean and
the covariance matrix. As mentioned in the introduction, the
PCRB is tight in this case, and is equal to the expected
value of . Note that in the Kalman filter obeys the
same recursion as with the exception that in (85) is
replaced by without the expectation operator.

In order to achieve practical conclusions from the above
theory, assume that drift of the autoregressive parameter is
slow, i.e., that the trace of is much lower than 1, and

Fig. 1. Fisher information for slowly varying parameter of an AR(1) process
as a function of this parameter forQ = 10

�2; 10�3; and10�4 (from the
bottom up), respectively.

that fluctuates around a mean valuefor a considerably
long period of time. Then, the covariance function of
is approximately equal to the covariance function of an AR
process with parameter. The matrix in (85) can be
replaced by a covariance matrix of the above process,
which is a function of . Note that is independent of the
variance of innovations . Some methods for calculating the
covariance matrix of an AR process are presented, e.g., in
[14]. For example, for the first-order autoregressive process
[abbreviated as AR(1) in the sequel]

(87)

holds. Here, is restricted to the interval to assure
stability of the model. If, in addition, the matrix sequence

is constant, , and it is possible to calculate
the limit information matrix (which is a scalar, in the case of

) from the equation

(88)

In particular, for the AR(1) process, we obtain the solution

(89)

Numerical values of (89) for , , and are
plotted in Fig. 1. It is shown that the information about the
parameter increases rapidly if the pole approaches unity. For
the pole well separated from , i.e., , it holds that

.
The matrix in (88) [or the corresponding scalar in (89)

in the special case] describes the information content that
the AR process bears about the fluctuating AR parameter.
This information content depends on the actual value of the
estimated parameter. If it happens that is small and,
consequently, that the limit PCRB is large, it indicates
that the assumed data model might not be appropriate.
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Example 2—Sinusoidal Frequency Estimation:In this sub-
section, the developed methodology is applied to computation
of the posterior CRB for tracking parameters of a single noisy
cisoid with slowly varying frequency. This computation is
easier than those recently presented in [16]. Second, as a spe-
cial case of a single time-invariant frequency, the well known
Craḿer–Rao bound by Rife and Boorstyn [9] is derived.

The signal is assumed to have the form

(90)

where

magnitude;
instantaneous phase of cisoid at time instant;
noise.

The instantaneous frequency (denoted) is defined as the
one-step increment of . Thus, the signal with randomly
varying frequency can be described by the state vector

(91)

and time update of is given by the pair of the equations

(92)

(93)

It is assumed that and are independent sequences
of independent random variables with zero mean values and
variances and , respectively; is Gaussian, and
is complex circular Gaussian (i.e., the real and imaginary parts
of are independent normally distributed with zero means
and equal variances ). Next, assume that the probability
distribution of the initial instantaneous phase and frequency
is known.

Obviously, in the standard formulation, the covariance ma-
trix of the system noise is not invertible,
and the conditional probability is singular. The
calculation of the information submatrix as in Section II fails,
but it is possible to apply the approach developed in Section III
with and . Comparing (93) with (54), we
get , and . The assumed probability
distributions of the noise and imply that

(94)

(95)

where and are normalization constants. A straightforward
calculation of (60)–(65) gives

(96)

(97)

Inserting the above relations into (56) and (57) and we get,
after some simplifications, (98), shown at the bottom of the
page, where

(99)

In (98) and (99), , , and denote elements of the
matrix .

The stationary solution of (98) can be found by putting
. After excluding the terms and ,

a fourth-order polynomial equation for is obtained. This
equation can be shown to have only one positive real-valued
root. The final result is

(100)

where

(101)

(102)

(103)

The limit PCRB on the instantaneous frequency is equal to the
left-upper corner element of , i.e.,

LPCRB

(104)

which coincides with the result derived in [16].
Finally, let us consider estimation of stationary frequency,

i.e., put . Then, (98) is reduced to

(105)

For (no a priori information about the frequency and
phase), the recursion (105) has a solution

(106)

(107)

(108)

(98)
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The PCRB on the frequency is equal to the left-upper corner
element of , i.e.,

PCRB

(109)

which coincides with the CRB for the problem [9].
Example 3—Sinusoidal Signal with Sinusoidal Phase Mod-

ulation: Consider a sinusoidal signal as in (90), define the
instantaneous frequency of the carrier as a one-step back-
ward difference of the instantaneous phaseas in (93), and
assume that the frequency evolves in time like a sinusoid
within the range . We refer to this sinusoid as a
message and assume that the frequency of the message evolves
like a random walk. Note that an algorithm for tracking
parameters of signals of this kind was proposed in [17].

At each time instant, the signal can be characterized by a
state vector with three components

(110)

where

instantaneous phase of the carrier;
instantaneous phase of the message;
frequency of the message.

Assume that the instantaneous frequency of the carrier equals

(111)

where is the central frequency of the carrier, andis the
maximum deviation of the carrier frequency from.

The time update of the state vector is given by the set of
equations

(112)

(113)

(114)

As in the previous subsection, assume that is a Gaussian
white noise with variance . The filtering in (112)–(114) and
(90) is an example of the singular case from Section IV with
nonlinear function and

(115)

(116)

(117)

and

(118)

A straightforward calculation gives

(119)

(120)

(121)

(122)

(123)

where

E (124)

E (125)

An available but tedious method of computing an approximate
value of is to choose a small fixed, do a number of inde-
pendent simulations of the data according to the “regularized”
model, and replace the expectations in (124) and (125) by
corresponding sample averages. Then, evaluateas in (79).

Another approach for computing can be utilized in cases
when the rate of evolution of , i.e., the variance , and
the variance of the observation noise are small. Consider
sequences , , that obey (112)–(114) with

(this is called an “equilibrium state” in [15]), and
assume that the probability densities of , ,
are concentrated in neighborhoods of , , and .
Then, and are approximated by

(126)

(127)

Using the above approximation the limit in (79) can be
evaluated analytically. The result, which is obtained with the
aid of symbolic Mathematica, is

(128)

(129)

(130)

(131)

(132)

(133)

where

(134)

(135)

(136)

and are the elements of .
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Fig. 2. Instantaneous frequency of the carrier of a sinusoidal signal and the
PCRB on the signal frequency as functions of time in the model considered
in Example 3.

To illustrate the above result, consider a signal of the length
with the following parameters: ,

, , , , . Fig. 2 shows
the posterior CRB on parameter , which was derived from

, as a function of time. Simultaneously, the instantaneous
frequency of the carrier is plotted. Note that the nonlinear
character of the signal model implies that the PCRB does not
converge to any limit value for , but it is periodic in
time with the frequency that is twice greater than the frequency
of the message . In particular, if the frequency of the carrier
is close to its minimum or maximum and its rate of change
is low, the amount of information that the signal bears about
the possible changes of is small, the PCRB increases, and
vice versa.

VI. CONCLUSIONS

A simple and straightforward derivation of the posterior
Cramér–Rao lower bound for the discrete-time nonlinear filter-
ing problem was presented. Explicit realizations of this lower
bound were calculated for three important examples.

1) tracking a slowly varying AR parameter;
2) tracking a slowly varying sinusoidal frequency;
3) tracking a slowly varying frequency that is modulated

by a sinusoid.

The derived lower bound can be used for evaluating the
performance of existing suboptimal methods of nonlinear
filtering. It is believed that a similar bound can be derived
for a more general model of nonlinear autoregressive systems
as well.

APPENDIX

PROOF OF PROPOSITION 2

The proof of Proposition 2 utilizes the following lemma.
Lemma 1: Consider the problem of estimating a random

vector from an observation vector. Let be the
joint probability density of , and assume that information

matrix

E (137)

exists. Let , where is a constant invertible
matrix. Then, the probability density exists, and the
corresponding information matrix for estimatingis given by

(138)

Proof: The proof is based on the well-known rule for
change of coordinates of the estimated parameters (see, e.g.,
[13]), is straightforward, and is therefore omitted here.

Proof of Proposition: Let denote the probability den-
sity of the triplet

(139)

It will be shown by induction that exists.
The information matrix that corresponds to the triplet

can be written in block form as

(140)

where the blocks are obtained as expecta-
tions of the second-order derivatives of with respect
to and .

The information submatrix for the state vector can
be obtained as the inverse of the right-lower submatrix of

, i.e.,

(141)

Consider the probability density of the quartet
, denoted by . Note that two vectors

(142)

obey the linear relationship. Since is assumed to be
regular, it follows that is regular as well. Applying Lemma
1, it follows by induction that in (139) exists for each, and

(143)
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Using conditional densities, can be written as the product

(144)

The second equality in (144) follows from the formulation of
the filtering problem. From (140) and (144), it follows that

(145)

where , were defined in (60)–(65). The
information submatrix for then equals

(146)

This can be rewritten using (141) as

(147)

Combining (143) and the form of in (59) and (142) implies

(148)

The statement follows.
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Abstract

CrameH r}Rao lower bounds for the discrete-time nonlinear state estimation problem are treated. The CrameH r}Rao bound for the
mean-square error matrix of a state estimate is particularly important for quality evaluation of nonlinear state estimators as it
represents a limit of cognizability of the state. Recursive relations for "ltering, predictive, and smoothing CrameH r}Rao bounds are
derived to establish a unifying framework for several previously published derivation procedures and results. Lower bounds for
systems with unknown parameters are newly provided. Computation of "ltering, predictive, and smoothing CrameH r}Rao bounds,
their mutual comparison and utilization for quality evaluation of some nonlinear "lters are shown in numerical examples. � 2001
Elsevier Science Ltd. All rights reserved.

Keywords: Nonlinear systems; Stochastic systems; Nonlinear state estimation; CrameH r}Rao bound; Mean-square error; Filtering; Prediction;
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1. Introduction

A recursive state estimator for a nonlinear stochastic
discrete-time system can be designed directly using the
Bayesian approach. As the closed form solution of the
Bayesian recursive relations is restricted to a few single
cases, it is necessary to provide numerical or analytical
approximations (Sorenson, 1974; KulhavyH , 1996). Non-
linear "lters based on such approximations generate
estimates which are more or less a!ected by these ap-
proximations and deviate from the ideal exact solution.
Quality evaluation of the nonlinear "lters is one of the
most complex problems in the area of nonlinear estima-
tion. The knowledge of a lower bound for the mean-
square error of an estimate can give an indication of
estimator performance limitations, and consequently it

can be used to determine whether imposed performance
requirements are realistic or not.

As is well known, the CrameH r}Rao (CR) bound, de-
"ned as the inverse of the Fisher information matrix,
represents an objective lower limit of cognizability of
parameters in constant parameter estimation. The CR
bound methodology was extended for random param-
eters estimation by Van Trees (1968). More recent dis-
cussions and extensions of the bound can be found in
Bobrovsky, Mayer-Wolf, and Zakai (1987). The idea of
the CR bound was successfully applied in state estima-
tion for discrete-time nonlinear stochastic dynamic sys-
tems by Bobrovsky and Zakai (1975) and Galdos (1980).
These works are based on a certain kind of `equivalencea
between probability density functions of the original
nonlinear stochastic system and an auxiliary linear Gaus-
sian system. A survey and a detailed critical discussion of
this approach to CR lower bounds for nonlinear "ltering
was presented by Kerr (1989). The approach by Galdos
(1980) was generalized for nonlinear pth order autoreg-
ressive processes driven by additive Gaussian noise with
state-dependent gain (Doerschuk, 1995).

An alternative approach to computation of the CR
bound (called also posterior CR bound) for the "ltering
problem in discrete-time nonlinear systems was proposed

0005-1098/01/$ - see front matter � 2001 Elsevier Science Ltd. All rights reserved.
PII: S 0 0 0 5 - 1 0 9 8 ( 0 1 ) 0 0 1 3 6 - 4
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by TichavskyH , Muravchik, and Nehorai (1998). The idea
of this approach is to regard the state history as a ran-
dom parameter vector. The CR bound for the state of the
system is obtained as the lower right block of the CR
bound for the complete state history. In the basic form of
the bound it is assumed that the state transition probabil-
ity density function (pdf ) p(x

���
� x

�
) exists and is twice

di!erentiable with respect to both its arguments. This is
rather restrictive assumption because the state distur-
bance may easily have lower dimension than the state,
what follows that p(x

���
�x

�
) need not exist or is not

continuous. The same problem with singularity was en-
countered in the former approach as well, see Galdos
(1980). One of the special cases, where this singularity
occurs, is the case of nonlinear system with unknown
constant parameters. The CR bound for "ltering in such
a system was derived already in the mentioned paper by
TichavskyH et al. (1998). Another special case is a system
with linear state evolution but with nonlinear measure-
ment. The posterior CR bound for one-step ahead pre-
diction in these systems was derived by Bergman (1999).

The recursive relations for posterior CR bounds, based
on derivation techniques using either "ltering or one-step
predictive pdf's, were alternatively derived in the form of
time and measurement update steps and extended for
the general multi-step prediction problem in S[ imandl,
KraH lovec, and TichavskyH (1999). Similar CR bound for
smoothing problem was derived by Bergman (1999). The
CR bound methodology was used for analysis of nonlin-
ear "lters, e.g. point-mass "lter in a navigation and track-
ing application (Bergman, Ljung, & Gustafsson, 1997),
and also for synthesis of the nonlinear Gaussian-sum
"lter (S[ imandl & KraH lovec, 1998).

The aim of the paper is to derive recursive relations for
"ltering, predictive, and smoothing CR bounds in order
to present the previous results of TichavskyH et al. (1998),
S[ imandl et al. (1999), and Bergman (1999) in a struc-
turally uni"ed form, and to make a further extension
of the CR bounds for nonlinear stochastic systems
with unknown parameters, keeping the established
framework.

The paper is organized as follows. After a detailed
speci"cation of the main goal of the paper in Section 2,
a derivation of the recursive relations for the "ltering and
one-step predictive CR bounds (in the form of time and
measurement update steps) for nonlinear discrete-time
stochastic system will be shown in Section 3. This deriva-
tion is crucial for expressing structurally uni"ed recursive
relations for multi-step predictive and smoothing CR
bounds in Sections 4 and 5, respectively. Each of the
Sections 3}5 will be completed by a solution of the CR
bound problem for the special case of system with un-
known parameters. Practical aspects of computation of
the bounds and e!ects of additive Gaussian disturbances
on a simpli"cation of the relation for the CR bounds will
be discussed in Section 6. Two numerical examples in

Section 7 present a comparison of "ltering, predictive,
and smoothing CR bounds and the use of the CR bound
for quality evaluation of several nonlinear "lters.

2. Problem statement

Consider the problem of estimating a vector of random
parameters �"[�

�
�
� 2 �

�
]� from a set of measured

data z�"[z�
�
z�
� 2 z�

�
]�. The joint pdf p(z�,�) is sup-

posed to be known. To simplify notations, the nabla
operator will be used

��"�
�

��
�

�
��

�
2

�
��

�
�.

The Fisher information matrix (FIM) J(�) for the para-
meter vector � is de"ned as follows

J(�)"!E���[�� ln p(z�,�)]�� (1)

provided that the derivatives and expectation exist. An
alternative formula for the FIM is

J(�)"E�[�� ln p(z�, �)]��� ln p(z�, �)�. (2)

Let �K "�K (z�) be an estimate of the parameter vector �.
The mean-square error matrix (MSEM) de"ned as
�(�K )"E�(�!�K )(�!�K )�� is bounded by an inverse of the
FIM

�(�K )*J��(�). (3)

The inverse J��(�) is called the posterior (alternatively
global (Bobrovsky et al., 1987) or Bayesian (Gill & Levit,
1995) CrameH r}Rao (CR) bound and it will be denoted as
C(�). In contrast to CR bound for deterministic (nonran-
dom) parameters, it is not required that �K must be unbias-
ed. The only necessary assumption is that both sides of
(3) must exist; see e.g. Van Trees (1968).

The idea of the CR bound for random parameters
� can be applied to the state estimation problem for
a nonlinear dynamic system (Kerr, 1989; TichavskyH et al.,
1998; Doerschuk, 1995).

Consider the discrete-time nonlinear stochastic dy-
namic system

x
���

"�
�
(x

�
,w

�
), k"0, 1, 2,2, (4)

z
�
"�

�
(x

�
,v
�
), k"0, 1, 2,2, (5)

where k is a time index, x
�

and z
�

with dim(x
�
)"n and

dim(z
�
)"r represent the state and measurement vectors,

respectively, �
�
(x

�
,w

�
) and �

�
(x

�
,v
�
) are known vector

functions, �w
�
� and �v

�
� are mutually independent white

sequences, with dim(w
�
)"n and dim(v

�
)"r, which are

described by known pdf's p(w
�
) and p(v

�
), respectively.

The noises are independent of the initial state x
�

which is
described by the known pdf p(x

�
).

Suppose that the state transition pdf p(x
�
� x

���
)

exists and is twice di!erentiable with respect to both its
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arguments. Similarly, suppose that the measurement pdf
p(z

�
�x

�
) exists and is twice di!erentiable with respect

to x
�
.

The aim is to "nd a recursive algorithm for lower
bounds of mean-square error matrices of three di!erent
types of state estimates. The MSEM of a state estimate
x( l��

is de"ned as

�l��
"E�(xl!x( l��

)(xl!x( l��
)��, (6)

where x( l��
is an estimate of the state xl using the

measurements z
�
, z

�
,2, z

�
. The estimate x( l��

is called
xltering state estimate for l"k, predictive state estimate
for l'k, and smoothing state estimate for l(k.

Since the assumption of two-fold di!erentiability of the
transition pdf p(x

�
� x

���
) is not ful"lled for an important

practical case of systems with unknown parameters, the
second main goal of the paper is to solve this case as well.

3. Filtering CrameH r}Rao bound

A derivation of the CR bound for nonlinear "ltering
problem was presented by TichavskyH et al. (1998) and
S[ imandl et al. (1999). The results have the form of recur-
sive relations for the CR bound setting a lower limit for
the MSEM of a state estimate at each time. This section
is based mainly on S[ imandl et al. (1999) and its aim is to
show the derivation of recursive relations for CR bounds
of both "ltering and one-step predictive MSEMs. The
derivation process and its results will then serve as
a starting point for solving the multi-step prediction and
smoothing problems in Sections 4 and 5, respectively.

A signi"cant attention is paid to a special case of
a nonlinear stochastic system with unknown parameters.
In design of estimation algorithms, the unknown system
parameters can be treated as a part of the system state.
However, a CR bound for such extended system state
cannot be derived directly and has to be treated as
a special singular case. The recursive formulae for "lter-
ing in a system with unknown constant parameters was
derived as a special case of a more general result in
TichavskyH et al. (1998). Section 3.3 presents an alternative
derivation of the CR bound in this case, and its extension
to prediction and smoothing is given in Sections 4.2 and
5.2, respectively.

3.1. Fisher information matrix for state history

The main idea of the derivation of the CR bounds
for nonlinear state estimation is to regard the whole
state history as an unknown vector quantity. Let the
complete state and measurement histories up to time
instant k be denoted as x�"[x�

�
x�
� 2 x�

�
]� and

z�"[z�
�
z�
� 2 z�

�
]�, respectively. Then the state history

x� may be interpreted as a vector of parameters of a ran-
dom measured vector z�. First, a lower bound for a

MSEM of the whole state history will be derived and the
obtained results are going to be used for derivation of
bounds for "ltering and one-step predictive estimates at
time k.

First, the "ltering estimate is considered. The joint pdf
of the state and measurement histories p(x�, z�) may be
written as p(x�, z�)"p(z�� x�)p(x�). Respecting the proper-
ties of the stochastic system (4) and (5), the logarithm of
this pdf can be expressed as

ln p(x�, z�)"
�
�
���

ln p(z
�
�x

�
)#ln p(x

�
)

#

�
�
���

ln p(x
�
�x

���
). (7)

The (k#1)n�(k#1)n FIM for the state history x� can
now be computed according to (1)

J
���

(x�)"!E��x�[�x� ln p(x�, z�)]�� (8)

provided that the expectation and derivatives exist.
To simplify the computation of J

���
(x�) the following

notation for n�n matrices is introduced

K�
���

"E�!�x
�
[�x

�
ln p(x

���
�x

�
)]��, (9)

K�����
���

"E�!�x
���

[�x
�
ln p(x

���
�x

�
)]��, (10)

K���
���

"E�!�x
���

[�x
���

ln p(x
���

�x
�
)]��, (11)

L�
�
"E�!�x

�
[�x

�
ln p(z

�
�x

�
)]��, (12)

with K�����
���

"[K�����
���

]�, i"0, 1,2, k,

and

K�
�
"E�!�x

�
[�x

�
ln p(x

�
)]��. (13)

The indexes in the K matrices have the following mean-
ing. The lower index is the time instant of the state
described by the transition pdf. The upper index
expresses the states for which the derivatives of the
transition pdf are performed.

Note that if no information about the initial state is
available, which can be mathematically expressed by
a pdf with an in"nitely small information content, i.e.
with an in"nite covariance matrix of x

�
, then K�

�
"0.

Hence, such situation does not restrict "nding the CR
bound.

Using (7) and (9)}(12) in (8), it follows that the FIM for
"ltering is a block-tridiagonal matrix, having

D
�
"L�

�
#K�

�
#K�

���
, i"0, 1,2, k!1, (14)

and L�
�
#K�

�
on its main diagonal, and K�����

���
and

[K�����
���

]� for i"0, 1,2, k!1 on its lower and upper
side diagonals, respectively. Let J

���
(x�) be decomposed
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into four blocks as

J
���

(x�)"�
D

�
K��

�

K��
�

� �

� D
���

K�����
�

K�����
�

L�
�
#K�

�
�

"�
J��
���

J��
���

J��
���

J��
���� , (15)

where zero block elements have been left empty. For
k"0 it holds J

���
(x�)"J��

���
"L�

�
#K�

�
.

The FIM J
�����

(x�) for the pdf p(x�, z���), with
p(x�, z��)"p(x

�
), can be derived analogically to the pre-

vious procedure. Since it holds that

p(x�, z�)"p(x�, z���)p(z
�
�x�, z���)

"p(x�, z���)p(z
�
�x

�
), (16)

it can be easily seen that J
�����

(x�) is equal to J
���

(x�),
except for the lower-right corner block, which is K�

�
instead of L�

�
#K�

�
. Thus it holds J��

�����
"J��

���
,

J��
�����

"J��
���

, and J��
�����

"K�
�
, and the FIMs J

���
(x�),

J
�����

(x���) may be expressed recursively as

J
���

(x�)"�
J��
�����

J��
�����

J��
�����

J��
�����

#L�
�
� (17)

J
�����

(x���)"�
J��
���

J��
���

0

J��
���

J��
���

#K�
���

K�����
���

0 K�����
���

K���
���

� (18)

starting from J
����

(x
�
)"J��

����
"K�

�
. Note that the di-

mensions of the FIMs J
���

(x�) and J
�����

(x���) increase
at each iteration and therefore these matrices are not
acceptable as a "nal result.

3.2. Fisher information matrix for xltering estimate

In this section, recursive relations for FIMs J
���

(x
�
)

and J
�����

(x
�
) belonging to the state x

�
are derived. Let

x( l��"[x( �
���

x( �
��� 2 x( �l��

]� (19)

be an estimate of the state trajectory up to time l given
measurements up to time k. Let the state trajectory
estimate error and the state estimate error be denoted as
x� l��"xl!x( l��, x� l��"xl!x( l��

, respectively. For l"k,
the MSEM of the estimate trajectory x( ��� will be denoted
���� and by (3) it is bounded as

����"E�x� ���[x� ���]��*J��
���

(x�). (20)

Applying (17) to (20) yields

����"E �
x� �����[x� �����]� x� �����x� �

���
x�
���

[x� �����]� x�
���
x� �
���
�

*�
J��
�����

J��
�����

J��
�����

L�
�
#K�

�
�

��
. (21)

By comparing lower-right blocks of the matrices on both
sides of the inequality it is possible to formulate an
inequality for the MSEM of a "ltering state estimate at
time k:

�
���

"E�x�
���
x� �
���

�*C
���

"[J��
���

(x�)]
��

, (22)

where C
���

"J��
���

(x
�
) is the CR bound and J

���
(x

�
) is the

FIM for an estimate x(
���

, and [J��
���

(x�)]
��

denotes
the n�n lower-right block of the inverse of the matrix
J
���

(x�).
The FIM J

���
(x

�
)"C��

���
, which will be called the "lter-

ing FIM, can be obtained from J��
���

(x�) taken in the form
on the right-hand side of the inequality (21) using the
block-matrix inverse (A.2) and (A.3) (see Appendix A).
Hence

C��
���

"L�
�
#K�

�
!J��

�����
[J��

�����
]��J��

�����
. (23)

The same routine can be followed for a one-step
predictive estimate x(

�����
as well. The MSEM ������"

E�x� �����(x� �����)�� is bounded below by J��
�����

(x���) and
from (3) it holds

������"E �
x� ���[x� ���]� x� ���x� �

�����
x�
�����

[x� ���]� x�
�����

x� �
�����

�
*�

J��
�����

J��
�����

J��
�����

K���
���

�
��

"J��
�����

(x���). (24)

For the MSEM of the predictive estimate x(
�����

the
following inequality, analogous to (22), is obtained:

�
�����

"E�x�
�����

x� �
�����

�*C
�����

, (25)

where C
�����

"J��
�����

(x
���

) is the CR bound for a one-
step predictive estimate x(

�����
, and J

�����
(x

���
) is the

FIM for x(
�����

, equal to the lower-right block of an
inverse of J

�����
(x���).

The FIM J
�����

(x
���

), i.e. the inverse of the CR bound
C

�����
, can be expressed as

C��
�����

"K���
���

!J��
�����

[J��
�����

]��J��
�����

. (26)

Using (18), (A.2), (A.3), (15), and (23), the following recur-
sion for the one-step predictive FIM is obtained:

C��
�����

"K���
���

!K�����
���

(K�
���

#C��
���

)��K�����
���

. (27)

Finally, relation (23) for the "ltering FIM C��
���

will be
treated using (26), then

C��
���

"C��
�����

#L�
�
. (28)
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Relations (28) and (27) describe a recursive computation
of the CR bounds for "ltering and one-step predictive
state estimates. Initial conditions for this recursion are
given by C��

����
"K�

�
. Equation (27) represents trans-

formation of the information matrix of the system state
from time k to time k#1, without any new information.
The matrix L�

�
in (28) represents the new independent

information about the system state contained in the ob-
servation z

�
.

Note that a generally di!erent CR bound for the state
x
�

could be theoretically obtained from the marginal pdf
p(x

�
, z�) derived from p(x�, z�). It follows from Proposition

1 in Bobrovsky et al. (1987) that such a bound would be
tighter, in general. However, it is extremely di$cult to
compute the marginal pdf and consequently the whole
latter bound.

3.3. CR bound for xltering with unknown parameters

Consider the following extension of the nonlinear
stochastic system in (4), (5):

x
���

"�
�
(x

�
, a,w

�
), k"0, 1, 2,2, (29)

z
�
"�

�
(x

�
, a,v

�
), k"0, 1, 2,2, (30)

where a is a random vector parameter with dim(a)"m,
independent of the initial state x

�
, p(x

�
)"p(x

�
�a),

and with a known, twice di!erentiable pdf p(a). The
task is to compute the "ltering CR bound for the
pair (x

�
,a). A valid CR bound can be computed

also in a case when no prior information (no p(a)) is
available for the same reason as in case of x

�
; see the note

after (13).
The nonlinear stochastic system in (29) and (30) can be

treated in the same way as the system in (4) and (5), if the
task is to construct a nonlinear "lter for the system. It is
su$cient to consider an extended system state vector
�
�
"[x�

�
a�
�
]� and let a

���
"a

�
for all k with a

�
"a.

However, this approach fails if one wants to compute the
corresponding CR bound. Recall that computation of the
CR bound assumes existence of the transition pdf and its
second-order di!erentiability. However, these conditions
are not ful"lled for the transition pdf of the extended state
p(�

���
��

�
). The reason is that the parameters a

�
are not

a!ected by any disturbances. Thus the transition pdf
p(a

���
�a

�
) is the Dirac function and the pdf of the ex-

tended state is not di!erentiable with respect to a
�
. In this

sense, computation of the CR bound for the stochastic
system (29) and (30) is a nontrivial generalization of the
recursions (27) and (28).

First, a recursion for the "ltering CR bound C
���

for
(x

�
, a) will be derived. Let the inverse of this matrix be

decomposed in blocks as

C��
���

"�
J��
���

J��
���

J��
���

J��
���
�. (31)

Again, the derivation will start with the expression for the
logarithm of the pdf of the joint state and measurement
histories,

ln p(x�, a, z�)"
�
�
���

ln p(z
�
�x

�
,a)#ln p(x

�
)#ln p(a)

#

�
�
���

ln p(x
�
�x

���
,a). (32)

Let matrices K�
���

, K�����
���

, K���
���

, and L�
�

be de"ned as
in (9)}(12) with the exception that p(x

���
�x

�
) and p(z

�
�x

�
)

are replaced by p(x
���

�x
�
, a) and p(z

�
�x

�
, a), respectively.

Let the additional notations analogous to (9)}(12) be
introduced.

K��
���

"E�!�x
�
[�a ln p(x

���
�x

�
, a)]��, (33)

K�����
���

"E�!�x
���

[�a ln p(x
���

�x
�
, a)]��, (34)

K�
���

"E�!�a[�a ln p(x
���

�x
�
, a)]��, (35)

L��
�
"E�!�x

�
[�a ln p(z

�
�x

�
, a)]��, (36)

L�
�
"E�!�a[�a ln p(z

�
�x

�
, a)]��, (37)

A
�
"E�!�a[�a ln p(a)]��, (38)

A
�
"A

�
#L�

�
#

���
�
���

(L�
�
#K�

�
)#K�

�
, (39)

G
�
"L��

�
#K��

�
#K��

���
, (40)

where i"0,1,2, k, and L��
�
"[L��

�
]�, K��

�
"[K��

�
]�,

K��
���

"[K��
���

]�. The matrices K��
�

, K��
���

, L��
�

, and G
�

have the size m�n, K�
���

, L�
�
, and A

�
are m�m matrices,

and K��
�

appearing in (40) for i"0 is an m�n zero
matrix.

Now, the FIM for the pair (x�,a), de"ned as

J
���

(x�, a)"!E��x��a
[�x��a

ln p(x�, a, z�)]��, (41)

provided the expectation and the derivatives exist, can be
written as

J
���

(x�, a)"�
J��
���

J��
���

[G���]�

J��
���

J��
���

L��
�

#K��
�

G��� L��
�

#K��
�

L�
�
#A

�
� (42)

where G�"[G
�
G

� 2 G
�
].

The "ltering CR bound C
���

for (x
�
,a) is found as the

lower-right (n#m)�(n#m) block of J��
���

(x�,a). The de-
tailed derivation is shown in Appendix B. The block
elements of C��

���
, as denoted in (31), obey the following

recursive relations

J��
���

"J��
�����

#L�
�
, (43)

J��
���

"J��
�����

#L��
�

, (44)

J��
���

"J��
�����

#L�
�
, (45)

where the one-step predictive FIMs are given as

J��
�����

"K���
���

!K�����
���

���
��
K�����

���
, (46)
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J��
�����

"K�����
���

!K�����
���

���
��

���
��

, (47)

J��
�����

"J��
���

#K�
���

!���
��

���
��

���
��

, (48)

where �l�
"J��l��

#Kl
l��

, ���l�
"J��l��

#K�ll��
and

���l�
"[���l�

]�. In (46)}(48) it holds that l"k.
The initial conditions for the recursive relations

(43)}(48) are J��
����

"K�
�
, J��

����
"K��

�
"0, and

J��
����

"A
�
. The relations describe a recursive block-

wise computation of the CR bound for "ltering with
unknown parameters. Note that (43) and (46) are exactly
as (28) and (27), respectively.

4. Predictive CrameH r}Rao bound

4.1. Derivation of multi-step predictive lower bound

The recursions for "ltering and one-step predictive CR
bounds derived in Section 3.2 can be easily generalized
for the general prediction problem (S[ imandl et al., 1999).
In particular, it is possible to derive the CR bound for
a multi-step predictive estimate x( l��

with l'k, using the
joint pdf p(xl, z�), in the similar way as for the "ltering
and one-step prediction problems. First, the derivation of
the two-step predictive FIM, i.e. l"k#2, will be shown
and then this case will be generalized for a multi-step
prediction (l*k#2) by the mathematical induction.

The logarithm of the joint pdf p(x���, z�) can be ex-
pressed as

ln p(x���, z�)"
�
�
���

ln p(z
�
�x

�
)#ln p(x

�
)

#

���
�
���

ln p(x
�
�x

���
) (49)

and it could be rewritten using the one-step predictive
joint pdf

ln p(x���, z�)"ln p(x���, z�)#ln p(x
���

�x
���

).

Thus, the two-step predictive FIM represents an expan-
sion of the one-step predictive FIM, which is known from
(18), by three additional blocks,

J
�����

(x���)"�
J��
�����

J��
�����

0

J��
�����

J��
�����

#K���
���

K�������
���

0 K�������
���

K���
���

� .

(50)

Obviously, it is possible to follow the same steps which
lead from (18) to the relation for the one-step predictive
FIM (27). Then

C��
�����

"K���
���

!K�������
���

(K���
���

#C��
�����

)��K�������
���

.

(51)

The derivation of the two-step predictive FIM can be
inductively applied to a general (l!k)-step prediction,

yielding the following recursion

C��l��
"Kl

l!Kl�l��l (Kl��l #C��l����
)��Kl���ll (52)

for l"k#1, k#2,2 . The recursion starts from the
"ltering FIM C��

���
and the K matrices are given by

(9)}(11) without any modi"cations.
The relation (52) represents the "nal result of the multi-

step predictive CR bound problem.

4.2. Predictive CR bound for system with unknown
parameters

It is easy to see that predictive CR bound for systems
(29) and (30) with unknown parameters obeys the same
recursions as the one-step predictive CR bound derived
in Section 3.3. Let the predictive FIM C��l��

be composed
of four blocks J��l��

, J��l��
, J��l��

, and J��l��
in the same way as

in (31). Then, similarly to (46)}(48), it holds that

J��l��
"Kl

l!Kl�l��l ���l����
Kl���ll , (53)

J��l��
"Kl�l !Kl�l��l ���l����

���l����
, (54)

J��l��
"J��l����

#K�l!���l����
���l����

���l����
(55)

for l"k#1, k#2,2 .

5. Smoothing CrameH r}Rao bound

5.1. Derivation of smoothing lower bound

Consider again the system (4), (5). The derivation of the
smoothing CR bound for a smoothing state estimate x( l��

,
0)l)k!1, is based on the FIM J

���
(x�), introduced

in (15), and on a suitable decomposition of this matrix
(Bergman, 1999). Note that J

���
(x�) is the lower bound

of the MSEM ���� of the estimate trajectory x( ��� from
(19) consisting of the smoothing estimates x(

���
,

x(
���

,2,x(
�����

, and the "ltering estimate x(
���

. Thus,
smoothing CR bounds should be implicitly contained in
J
���

(x�). The decomposition divides J
���

(x�) into blocks
which correspond to time instants 0, 1,2, l, and
l#1, l#2,2, k, respectively, as

J
���

(x�)"�
�l�l

Sl��
S�l��

�l��
�

"�
D

�
K��

�

K��
�

� �

� Dl Kl�l��l��

Kl���ll��
� �

� D
���

K�����
�

K�����
�

L�
�
#K�

�

� ,

(56)
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where zero blocks have been left empty, and the block
�l�l

can be also expressed as

�l�l
"�

J��l�l
J��l�l

J��l�l
J��l�l

#Kl
l��
�. (57)

The matrix �l�l
is almost identical with the FIM Jl�l

(xl),
except for the matrix Kl

l��
in the lower-right block of

�l�l
. Recall that the same structure appeared also in (18).

The inverse of J
���

(x�) contains the smoothing CR
bounds Cl��

, l"0,1,2, k!1, and the "ltering CR
bound C

���
on its main diagonal. Let the inverse J��

���
(x�)

be decomposed as follows

J��
���

(x�)"�
C

���

�

Cl��

�

C
���

�
"�

[J��
���

]
��

[J��
���

]
��

[J��
���

]
��

[J��
���

]
��
� , (58)

where only the diagonal blocks have been indicated.
Since only the lower-right block Cl��

of [J��
���

]
��

is of
interest, it will be extracted by

Cl��
"[0 I

�
][J��

���
]
��

[0 I
�
]�, (59)

where I
�

is an n�n identity matrix and 0 denotes a zero
matrix of appropriate size.

To obtain [J��
���

]
��

, the block-matrix inverse (A.2),
(A.3) will be applied to (56). Furthermore suppose that all
smoothing CR boundsCl����

,Cl����
,2,C

�����
, and the

"ltering bound C
���

in the block [J��
���

]
��

(see (58)) are
known. Then using (A.2) yields

[J��
���

]
��

"���l�l
#���l�l

Sl��[J
��
���

]
��
S�l�� ���l�l

. (60)

Before the prescribed extraction (59) is performed for (60),
the following intermediate computation should be
pointed out

[0 I
�
]���l�l

[0 I
�
]�"(J��l�l

#Kl
l��

!J��l�l
[J��l�l

]��J��l�l
)��

"(C��l�l
#Kl

l��
)��, (61)

where the inverse of �l�l
in the form of (57) was realized

by (A.2), (A.3), and the "nal expression in (61) was ob-
tained utilizing the relation (23) for the "ltering FIM.

Now it is possible to substitute (60) into (59). Using (61)
and substituting for Sl��

from (56), the following relation
for the smoothing CR bound is obtained:

Cl��
"(C��l�l

#Kl
l��

)��#(C��l�l
#Kl

l��
)��Kl�l��l��

�Cl����
Kl���ll��

(C��l�l
#Kl

l��
)�� (62)

for l"k!1, k!2,2, 0. Note that Cl��
depends only

on the previous smoothing CR bound Cl����
and on the

"ltering bound Cl�l
. Thus, the relation (62) explicitly

describes a backward recursive computation of the
smoothing CR bound Cl��

, l(k, while both predictive
and "ltering bounds were described through their in-
verses. The inverse of the "ltering CR bound Cl�l

also
acts in (62) and it can be taken directly from the forward
recursions (27) and (28).

However, it might be useful to unify the relation for
the smoothing CR bound with the structures of
the predictive and "ltering bounds. Thus, (62) will be
further modi"ed using the matrix inverse (A.1); (see
Appendix A).

Obviously, the form of the left-hand side of (A.1) can be
found on the right-hand side of (62). Hence the inverse of
the smoothing CR bound, i.e. the smoothing FIM, obeys
this recursive relation

C��l��
"C��l�l

#Kl
l��

!Kl�l��l��
[Kl���ll��

(C��l�l
#Kl

l��
)��

�Kl�l��l��
#C��l����

]��Kl���ll��
. (63)

Finally, compare the bracketed inverted expression on
the right-hand side of (63) with (27). Employing the latter
relation, the "nal relation for the smoothing CR bound is
obtained

C��l��
"C��l�l

#Kl
l��

!Kl�l��l��

�(Kl��l��
#C��l����

!C��l���l
)��Kl���ll��

(64)

for l"k!1, k!2,2, 0. The initial condition for this
backward recursion is given by the "ltering FIM C��

���
.

5.2. CR bound for smoothing with unknown parameters

The derivation of the smoothing CR bound for
a smoothing state estimate x( l��

, 0)l)k!1, in the
extended nonlinear system (29), (30) proceeds similarly as
in the previous subsection.

Firstly, consider the FIM J
���

(x�, a) from (42) in the
form analogous to (56),

J
���

(x�, a)"�
�l�l

S� l��
SI �l�� �I l��� . (65)

In (65), �l�l
was introduced in (57),

SI l��"[Sl��
[Gl]�]"�

0 [Gl��]�

K� l G�l �, (66)

where K� l"[Kl�l��l��
0], and �I l�� is the lower-right

(n(k!l)#m)�(n(k!l)#m) block of J
���

(x�,a).
The smoothing CR bound for the pair (xl ,a) given the

measurements up to time k can be decomposed as

Cl��
"�

C��l��
C��l��

C��l��
C��l��
�, (67)

where, indeed, C��
���

"C��
���

"2"C��
���

.
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The detailed derivation of recursive relations for the
remaining blocks of Cl��

is shown in Appendix C and the
"nal result is the following:

C��l��
"���l l #���l l (Kl�l��l��

C��l����
Kl���ll��

#���l lC��l����
Kl���ll��

#Kl�l��l��
C��l����

���l l

#���l lC��l����
���l l )���l l , (68)

C��l��
"!���l l (Kl�l��l��

C��l����
#���l lC��l����

), (69)

C��l��
"C��l����

, (70)

where l"k!1, k!2,2, 0.

6. Computation of CrameH r}Rao bounds

The previous sections were focused on theoretical deri-
vations of CR bounds for all basic types of state estima-
tion. Now, practical possibilities of computation of the
CR bounds will be discussed for system (4) and (5), but
analogous results can be obtained also for system (29)
and (30) with unknown parameters.

Obviously, the expectations in (9)}(12) are crucial
for complexity of the CR bounds. Computational
complexity of these expectations depends on the struc-
ture of the system (4), (5) and on properties of the ran-
dom variables x

�
, w

�
, and v

�
. Hence, after a general

discussion two signi"cant special cases of the system
will be analyzed separately: additive Gaussian noise in
state and measurement equations, and linear Gaussian
system.

6.1. General case

A necessary condition for calculation of the K and
L matrices in (9)}(13) is to "nd the transition pdf 's
p(x

���
�x

�
) and the measurement pdf 's p(z

�
�x

�
) for

k"0, 1, 2,2, from system (4) and (5), and the derivatives
in (9)}(13). Of course, these relations cannot be used
without a further speci"cation of the system structure
and the random variables.

As it is not generally possible to compute the expec-
tations in (9)}(13) analytically, a simulation Monte
Carlo method can be used for their estimation. With
the estimated matrices, the "ltering, predictive, and
smoothing CR bounds can be generated by (28), (52),
and (64).

6.2. Additive Gaussian noise

An important special case of general system descrip-
tion (4) and (5) is assuming additive Gaussian state and
measurement noises as follows:

x
���

"f
�
(x

�
)#w

�
, k"0, 1, 2,2, (71)

z
�
"h

�
(x

�
)#v

�
, k"0, 1, 2,2, (72)

where f
�
(x

�
) and h

�
(x

�
) are known vector functions and

the state and measurement noises w
�
, v

�
have zero means

and positive de"nite covariance matrices Q
�

and R
�
,

respectively, thus p(w
�
)"N(w

�
: 0,Q

�
) and p(v

�
)"

N(v
�
: 0,R

�
). The initial state x

�
is described as

p(x
�
)"N(x

�
:m

�
,M

�
).

Using the assumptions of the additive Gaussian noises,
the transition and measurement pdf's can be expressed as
follows:

p(x
���

�x
�
)"N(x

���
: f

�
(x

�
),Q

�
), (73)

p(z
�
�x

�
)"N(z

�
:h

�
(x

�
),R

�
) (74)

and then the relations (9)}(12) can be rewritten as

K�
���

"E�[�x
�
f
�
(x

�
)]�Q��

�
�x

�
f
�
(x

�
)�, (75)

K�����
���

"!E�[�x
�
f
�
(x

�
)]��Q��

�
, (76)

K���
���

"Q��
�

, (77)

L�
�
"E�[�x

�
h
�
(x

�
)]�R��

�
�x

�
h
�
(x

�
)�. (78)

Since �x
�

ln p(x
�
)"!(x

�
!m

�
)�M��

�
, it follows from

the de"nition (13) of K�
�

that K�
�
"M��

�
.

By carrying out M simulation experiments for system
(71), (72) with k"0, 1,2, N, one obtains M realizations
of the state trajectory �x

�
��
���

and corresponding
measurements �z

�
��
���

.
The CR bounds can be computed using the relation

(28) for "ltering, (52) for prediction, and (64) for smooth-
ing with the matrices K�

���
, K�����

���
, and L�

�
replaced by

their estimates; e.g. the estimate of K�����
���

is computed as

K< �����
���

"

1

M

�
�
	��

[!�x
�
f
�
(x

�
)�x

��x
� �		

]�Q��
�

,

where �x
�
( j )��

���
is a jth realization of the state traject-

ory, j"1, 2,2, M. The quality of Monte Carlo estimates
increases with M, but even a high number of simulation
experiments need not guarantee that the estimates are
satisfactory. Such situation is illustrated in Example 2,
Fig. 10.

6.3. Linear Gaussian case

On the contrary to the previous cases, the CR bounds
can be found analytically for linear Gaussian system
with f

�
(x

�
)"F

�
x
�

in (71) and h
�
(x

�
)"H

�
x
�

in (72)
where F

�
and H

�
are known n�n and r�n matrices,

respectively.
Note that in this special case, the matrices in (75)}(78)

become deterministic. Thus the recursive relations for all
types of CR bounds (28), (27), (52), and (64), which gener-
ate inverses of the CR bounds, could be rearranged
particularly using (A.1), and explicit relations for the CR
bounds can be obtained.

After the rearrangement, the relations for the "ltering
CR bound are identical with the recursive equations for
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Fig. 1. Predictive CR bound (left graph) and "ltering with smoothing CR bounds (right graph) for the "rst state component in Example 1.

covariance matrices in the Kalman "lter (Anderson
& Moore, 1979):

C
���

"C
�����

!C
�����

H�
�

�(H
�
C

�����
H�

�
#R

�
)��H

�
C

�����
, (79)

C
�����

"F
�
C

���
F�

�
#Q

�
. (80)

The relation for the multi-step predictive CR bound Cl��
,

l'k, is given as

Cl��
"Fl��

Cl����
F�l��

#Ql��
(81)

corresponding to the recursion for the covariance matrix
of the optimal linear predictor.

The recursive relation for the smoothing CR bound
Cl��

, 0)l(k, can be rearranged to the relation for the
conditional covariance matrix in the Rauch}Tung}
Striebel optimal linear smoother (Lewis, 1986):

Cl��
"Cl�l

!Cl�l
FlC��l���l

�(Cl���l
!Cl����

)C��l���l
F�lCl�l

. (82)

7. Numerical examples

The goal of this section is to demonstrate computation
and behaviour of the CR bounds for "ltering, prediction,
and smoothing both for the system (4) and (5) and for the
system with unknown parameters (29) and (30).

Example 1. The following discrete-time nonlinear
stochastic system is considered

x
���

"[x
���

x
���

x
���

]�#w
�
, z

�
"x

���
x
���

#v
�
,

where x
�
"[x

���
x
���

]�. The covariances of the
zero-mean white Gaussian noises �w

�
�, �v

�
� are

Q"diag�0.25,10�
�, R"0.01, respectively.
Simulations of the system were carried out for

the initial conditions p(x
�
)"N(x

�
: [10 !0.85]�,

diag�0.1,10���) for k"0, 1,2, N, N"40 and M"200.
The CR bounds were calculated for the following state
estimation problems: "ltering, 1-step to 7-step prediction,
and 1-step to 3-step "xed-lag smoothing. Also, the "xed-
interval smoothing CR bound C

���
was computed.

The results are presented in Figs. 1}3. The two diag-
onal components of the matrices are displayed separate-
ly. In Figs. 1 and 2, the predictive CR bounds are
depicted apart from the others and the comparison of all
three types of CR bounds is shown in Fig. 3. Obviously,
the predictive bounds, which lie above the "ltering CR
bound, exhibit a growth with increasing prediction step.
Naturally, the smoothing bounds are lower than the
corresponding "ltering bounds since they are based on
both past and future information.

Example 2. The second example demonstrates the com-
putation of the CR bounds for a system with an unknown
parameter and shows using the CR bounds for quality
evaluation of nonlinear "lters. The following stochastic
system from Chui, Chen, and Chui (1990) is considered

x
���

"F(a)x
�
#w

�
, z

�
"x

���
#v

�
,

where x
�
"[x

���
x
���

]� and a is an unknown random
parameter of the matrix F(a) whose "rst row is [1 a] and
second row is [!0.1 1]. The initial state is given by the
Gaussian pdf p(x

�
)"N(x

�
: [20 20]�, 300 I

�
). Covarian-

ces of zero-mean white Gaussian the noises �w
�
�, �v

�
� are

Q"0.1 I
�
, R"0.01, respectively. The prior pdf of param-

eter a is Gaussian, p(a)"N(a: 0.1, 10��).
As the unknown parameter is not a!ected by a noise,

the "ltering, predictive, and smoothing CR bounds must
be computed by (43)}(48), (53)}(55), and (68)}(70), respec-
tively. The K, L, and A matrices are given by de"nitions
(9)}(12), (33)}(39) but thanks to the assumption that
w
�

and v
�

are additive Gaussian noises, the simpli"ca-
tions described in Section 6.2 may be employed. The
computation of K�

���
, K�����

���
, K���

���
, L�

�
is straightforward
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Fig. 2. Predictive CR bound (left graph) and "ltering with smoothing CR bounds (right graph) for the second state component in
Example 1.

Fig. 3. Filtering CR bound (dot-and-dash line) lies above smoothing CR bounds (solid lines for "xed-lag and dashed line for "xed-interval smoothing)
and below predictive CR bounds (solid lines). Left graph: "rst state component; right graph: second state component in Example 1.

Fig. 4. Filtering CR bound C��
���

(dot-and-dash line), predictive CR
bound C��

����

(upper solid line), "xed-lag smoothing CR bound C��

����

(lower solid line), and "xed-interval smoothing CR bound C��

���
(dashed

line; coincides with C��
����


) for the "rst state component in Example 2.

from (75)}(78) with �x
�
f
�
(x

�
)"F(a) and �x

�
h
�
(x

�
)"[1 0].

Note that all these K and L matrices can be enumerated
analytically. For this example, the relations (33)}(35)
can be expressed as K��

���
"[10E�x

���
� 10E�ax

���
�],

K�����
���

"[!10E�x
���

� 0], K�
���

"10E�x�
���

�. To enu-
merate these relations, the expectations E�x

���
�, E�ax

���
�,

and E�x�
���

� must be numerically computed using Monte
Carlo simulations. Finally, L��

�
and ¸�

�
equal to [0 0] and

0, respectively, because the measurement pdf does not
depend on the parameter a.

Simulations of the system were carried out for
k"0, 1,2, N, N"100, with M Monte Carlo experi-
ments, yielding M realizations of state and measurement
trajectories �x

�
( j)��

���
, �z

�
( j)��

���
, and M realizations of

the parameter a(j) with j"1,2,2, M.
The time behaviour of the "ltering, "ve-step predictive,

"ve-step smoothing, and "xed-interval smoothing CR
bounds, computed with M"20,000, is depicted in
Figs. 4}6 for each diagonal element of the bound
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Fig. 5. Filtering CR bound C��
���

(dot-and-dash line), predictive
CR bound C��

����

(upper solid line), "xed-lag smoothing CR

bound C��
����


(lower solid line), and "xed-interval smoothing CR
bound C��

���
(dashed line) for the second state component in

Example 2.

Fig. 6. Filtering CR bound C��
���

(dot-and-dash line), predictive
CR bound C��

����

(upper solid line), "xed-lag smoothing CR

bound C��
����


(lower solid line), and "xed-interval smoothing CR
bound C��

���
(dashed line) for parameter a.

Fig. 7. Filtering CR bound C��
���

(dot-and-dash line) and mean-square
errors of the x

���
estimates for EKF (dotted line), MEKF (dashed line),

and GSF (solid line).

separately. The diagonal components of the CR bound
for the state are denoted as C��l��

, C��l��
and the CR bound

for the parameter is denoted as C��l��
. The "ltering, predic-

tive, and "xed-lag smoothing CR bounds for state vari-
ables tend to nonzero values with kPR (see Figs. 4
and 5), while the bounds for the parameter a tend to zero
(see Fig. 6), because the parameter is not in#uenced by
any noise.

For the purpose of the combined state/parameter
estimation, the state of the system is extended as
�
�
"[x�

�
a
�
]�, where a

���
"a

�
with a

�
"a. The

extended state �
�

will be estimated by three nonlinear
"lters: extended Kalman "lter (EKF) (Anderson &
Moore, 1979), modi"ed extended Kalman "lter (MEKF)

(Chui et al., 1990), and nine-term Gaussian-sum "lter
(GSF) (Sorenson & Alspach, 1971; S[ imandl & FlmHdr,
1997).

The initial conditions for EKF and MEKF are given
by the Gaussian priors p(x

�
), p(a). The nine-term GSF is

started from the following prior pdf:

p(�
�
�z��)"

�
�
���

	��	
�
N(�

�
:�K ��	

�
,P��	

�
),

where 	��	
�

"1/9, P��	
�

"diag�60,60,0.001� for all
i"1, 2,2, 9, and

[�K ��	
� 2�K ��	

�
]

"�
1 1 1 20 20 20 39 39 39

1 20 39 1 20 39 1 20 39

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1�
to maintain the "rst two moments of p(x

�
). For a jth

realization of the measurement trajectory �z
�
( j)��

���
,

j"1, 2,2, M, where M"550,000, each of the "lters
generates a trajectory of extended state estimates
��K

���
(j)��

���
. These estimates are utilized for numerical

computation of the mean-square error matrix given by
(6)

�K
���

"

1

M

�
�
	��

[�
�
( j)!�K

���
( j)][�

�
( j)!�K

���
( j)]�

for k"0, 1,2, N, where ��
�
( j)��

���
is the jth simulated

state trajectory.
Time behaviours of the "ltering CR bound C

���
and of

the MSEM estimates �<
���

for the three "lters are
displayed in Figs. 7}9 for each component �

�
. As can be

seen in the "gures, the GSF and the MEKF generate
estimates with much higher quality than those produced
by the standard EKF. The best results are obtained by
the GSF.
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Fig. 8. Filtering CR bound C��
���

(dot-and-dash line) and mean-square
errors of the x

���
estimates for EKF (dotted line), MEKF (dashed line),

and GSF (solid line).

Fig. 9. Filtering CR bound C��
���

(dot-and-dash line) and mean-square
errors of the parameter estimates for EKF (dotted line), MEKF (dashed
line), and GSF (solid line).

Fig. 10. Comparison of mean-square errors of GSF estimates of x
���

for
M"20,000 (dotted line) and M"550,000 (solid line). The CR bound
C��

���
is depicted as dot-and-dash line.

For computation of the MSEMs, it was necessary to
set the number of simulations as M"550,000, because
for M"20,000, which was used for computation of the
CR bounds, the mean-square error �K ��

���
of the GSF

estimate of x
���

is so inaccurate that it signi"cantly falls
under the corresponding lower bound C��

���
, as illustrated

in Fig. 10.

8. Conclusions

The CrameH r}Rao bound for discrete-time nonlinear
stochastic systems represents a lower limit of cogniz-
ability of the system state. It can be used as a gauge
for performance evaluation of nonlinear estimators.
The paper presents a uni"ed derivation of "ltering,

predictive, and smoothing CrameH r}Rao bounds for the
state in systems that may depend on unknown
parameters.

Utilization of the "ltering CrameH r}Rao bounds for
performance evaluation of nonlinear "lters and compari-
son of the "ltering, predictive, and smoothing bounds
were illustrated in numerical examples.
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Appendix A: Inverse of matrices

The inverse of the matrix expressionA#BCD is given
by the following relation:

(A#BCD)��"A��!A��B

�(DA��B#C��)��DA�� (A.1)

provided that A�� and C�� exist.
The inverse of a 2�2 block matrix can be expressed

as

�
A D

C B�
��

"�
� !A��D���

!���CA�� ��� �, (A.2)

�"A��#A��D���CA��,

�"B!CA��D
(A.3)

provided that A�� exists.
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Appendix B: Derivation of recursive relations for 5ltering
CR bound with unknown parameters

The "ltering CR bound C
���

for the pair (x
�
,a) is found

as the lower-right (n#m)�(n#m) block of J��
���

(x�,a) in
(42) and can be expressed by aid of the block-matrix
inverse (A.2) and (A.3) as

C��
���

"�
J��
���

L��
�

#K��
�

L��
�

#K��
�

L�
�
#A

�
�!�

J��
���

G����
[J��

���
]��[J��

���
[G���]�]. (B.1)

Using the notations in (15) and (31), the following rela-
tions can be written:

J��
���

"L�
�
#K�

�
!J��

���
[J��

���
]��J��

���
, (B.2)

J��
���

"L��
�

#K��
�

!J��
���

[J��
���

]��[G���]�, (B.3)

J��
���

"L�
�
#A

�
!G���[J��

���
]��[G���]�. (B.4)

The one-step predictive FIM J
�����

(x���, a) has the form
similar to (18),

�
J��
���

J��
���

0 [G���]�

J��
���

J��
���

#K�
���

K�����
���

G�
�

0 K�����
���

K���
���

K�����
���

G��� G
�

K�����
���

A
���

� (B.5)

and with notation (57) the predictive FIM for (x
�
,a) is

C��
�����

"�
J��
�����

J��
�����

J��
�����

J��
�����

�"�
K���

���
K�����

���
K�����

���
A

���
�

!�
0 K�����

���
G��� G

�
����

��� �
0 [G���]�

K�����
���

G�
�
�. (B.6)

Apply the matrix inverse (A.2) and (A.3) for ���
���

, then
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where (cf. (B.2))
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Thus, from (B.6) and (B.7) one gets
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After some simpli"cations, using (B.2)}(B.4), (40) and (39),
relations (B.11) and (B.12) can be rewritten as
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where ���
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Comparing (B.2)}(B.4) with (B.10), (B.13) and (B.14),

respectively, for time k#1 it is evident that the rela-
tions di!er only by L���
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which re-

present a new information about the system state x
�

and the parameter a that is contained in the observ-
ation z
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Appendix C: Derivation of recursive relations for
smoothing CR bound with unknown parameters

The inverse of J
���

(x�,a) in (65) contains the smoothing
CR bounds C��l��

, for l"0,1,2, k!1, and the "ltering
CR boundsC��l�l

, C��
���

on its main diagonal. Let the matrix
be decomposed as follows:
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where all blocks except for the diagonal ones, the last
row, and the last column have been left empty. The
blocks that are of interest can be extracted similarly to
(59) as
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Then using (A.2) and the notation from (65) yields
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Note that the inverse of �l�l
has been already computed

in (B.7) and SI l�� was introduced in (66). Hence using (B.3)
and (40), it holds that
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Now, (C.2) and (C.3) can be expressed using (C.4), (C.5),
and (C.6)
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Near-Field/Far-Field Azimuth and Elevation Angle
Estimation Using a Single Vector Hydrophone

Petr Tichavský, Member, IEEE, Kainam Thomas Wong, Senior Member, IEEE, and Michael D. Zoltowski, Fellow, IEEE

Abstract—This paper introduces a new underwater acoustic
eigenstructure ESPRIT-based algorithm that yields closed-form
direction-of-arrival (DOA) estimates using a single vector hy-
drophone. A vector hydrophone is composed of two or three
spatially co-located but orthogonally oriented velocity hy-
drophones plus another optional co-located pressure hydrophone.
This direction finding algorithm may (under most circumstances)
resolve up to four uncorrelated monochromatic sources impinging
from the near field or the far field, but it assumes that all signal
frequencies are distinct. It requires noa priori knowledge of the
signals’ frequencies, suffers no frequency-DOA ambiguity, and
pairs automatically the x-axis direction cosines with they-axis
direction cosines. It significantly outperforms an array of spatially
displaced pressure hydrophones of comparable array-manifold
size and computational load but may involve more complex
hardware. This work also derives new Cramér–Rao bounds
(CRBs) for various vector hydrophone constructions of arrival
angle estimates for the incident uncorrelated sinusoidal signals
corrupted by spatio-temporally correlated additive noise.

Index Terms—Acoustic interferometry, acoustic signal pro-
cessing, acoustic velocity measurement, array signal processing,
blind estimation, direction-of-arrival estimation, phased arrays,
sonar arrays, sonar signal processing, underwater acoustic arrays.

I. INTRODUCTION

A new algorithm called theunivector hydrophone ESPRIT
is herein proposed and analyzed for eigenstructure-based

closed-form azimuth/elevation direction-of-arrival (DOA) esti-
mation for multiple sinusoidal sources incident from either the
near-field or the far-field using a single vector hydrophone.

A vector hydrophone consists of two or three orthogonally
oriented velocity hydrophones plus an optional pressure hy-
drophone, all co-located in space. Each velocity hydrophone
measures one Cartesian component of the impinging underwater
acoustic particle velocity vector field. A four-component vector
hydrophone would thus measure all three Cartesian components
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of the acoustic velocity vector field plus the overall pressure
scalar field; both the azimuth angles and the elevation angles
may be estimated and automatically matched with only one
vector hydrophone. Velocity hydrophone technology has been
used in underwater acoustics for some time [1] and currently
attracts reinvigoratedattention [18].Diverse typesofvelocityhy-
drophonesare commercially available and have been constructed
using a variety of technologies (see references cited in [10]).

The present scheme differs from most other direction finding
methods in its recognition of the vector character of the im-
pinging underwater acoustic wavefields and in how it uses the
eigenvalues and the eigenvectors of the data covariance matrix.
Customary arrays of spatially displaced pressure hydrophones
typically encapsulate the arrival angle information in the spatial
phase offsets among spatially displaced pressure hydrophones.
In contrast, the arrival angle information here is embedded only
in the intrinsic directionality of each constituent component of
the vector hydrophone. Thus, the present method requires no
a priori information of the signals’ frequencies (but it is nec-
essary that no two sources have the same frequency)1 because
the array manifold is entirely independent of signal frequency
due to the spatial co-location of its constituent sensors. The
complicating effects of a near-field wave front’s curvature is
also avoided because of the spatial co-location of the univector
hydrophone array’s constituent sensors. The present algorithm
may be adapted to handle frequency-hopped signals of unknown
hop sequences [24].

Underwater acoustic vector hydrophones have been used by
D’Spain et al. [9] in linearly constrained minimum-variance
(LCMV) beamforming toward predetermined directions.
Shchurov et al. [12] have also deployed similar arrays to
measure ambient noises but not for source localization. Nehorai
and Paldi [10] first introduce the vector hydrophone measure-
ment model to the signal processing research community;
they also propose a scalar performance measure [the mean
square angular error (MSAE)] and derive an expression and
a bound for the MSAE for the vector hydrophone. Hochwald
and Nehorai [15] investigate identifiability issues associated
with vector hydrophones. Hawkes and Nehorai [21] adapt the
Capon method of spectrum estimation to arrays of vector hy-
drophones. Hawkes and Nehorai [22] analyzed array geometry
design with vector hydrophones as array elements. The vector

1This assumption may hold in active sonar wherein the reflectors have dis-
tinct Dopplers in reference to the receiver. This assumption would be violated,
say, when multipaths (with the same Doppler) arrive from a same source. The
steering vectors of monochromatic sources at the same frequency cannot be sep-
arated by the present temporal-invariance implementation of ESPRIT. The fre-
quency separation required of the monochromatic signals is investigated in Sec-
tion V.

1053-587X/01$10.00 © 2001 IEEE
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hydrophone’s beam pattern is analyzed by Wong and Chi in
[29]. Hawkes and Nehorai [28] investigate the performance
of vector hydrophones mounted on rigid-pressure surfaces or
pressure-releasing surfaces.

The Uni-Vector-Hydrophone ESPRITalgorithm herein
proposed represents the firsteigenstructure (subspace)method
that estimates the directions-of-arrival of multiple uncorrelated
monochromatic sources using only a single vector hydrophone.
Eigenstructure-based (also called subspace-based) direc-
tion-finding methods such asESPRIT[5], though sub-optimal,
have supplanted optimal methods such as the maximum like-
lihood (ML) method because eigenstructure methods require
only the second-order statistics of the additive noise, require
lighter computation loads but still offer comparable perfor-
mance as the optimal methods at low-SNR and/or few-snapshot
scenarios. The direction-finding approach of normalizing
the vector hydrophone steering vectors is first adapted to
the eigenstructure method by Wong and Zoltowski [19] to
multiple arbitrarily spaced vector-sensors at possibly unknown
locations. Wong and Zoltowski [20] extend the intersensor
spacing with a sparse regular array of vector hydrophones
while avoiding ambiguity in the direction-cosine estimates.
Wong and Zoltowski [23] also advanced a Root-MUSIC-based
direction-finding algorithm applicable to vector hydrophones.
Wong and Zoltowski [25] present still another direction-finding
algorithm allowing irregularly spaced vector hydrophones
that adaptively steers null beams in the underwater acoustic
particle velocity vector-field and that self-initiates a subsequent
iterative search while requiring noa priori source information.

In the algorithm proposed herein, a matrix pencil pair is
formed out of two temporally-displaced data sets collected
from the single vector hydrophone. This proposed algorithm,
unlike most direction-finding applications of the popular eigen-
structure-based parameter estimation algorithm ESPRIT, forms
only a temporal invariance but nospatial invariance (which
involves two displaced but otherwise identical subarrays in the
overall array geometry).2

II. M ATHEMATICAL MODEL OF THE FOUR-COMPONENT

VECTORHYDROPHONEMANIFOLD

The present signal model involves multiple uncorrelated
monochromatic longitudinal underwater acoustic waves of
distinct frequencies, having traveled through a homogeneous
isotropic medium and impinging upon a single four-component
vector hydrophone. The th impinging underwater acoustic
wave front would have the following 4 1 array manifold at
the vector hydrophone [10]:

(1)

2A direction-finding algorithm specifically for vector hydrophones ex-
ploiting spatial invariances may be found in [20]; a direction-finding algorithm
exploiting the invariances among various Cartesian components of the
underwater acoustic velocity field may be found in [19]. An electromagnetic
version of the present algorithm has also been proposed by the present authors
[16] using three orthogonally oriented electric dipoles and three orthogonally
oriented magnetic loops, all co-located in space.

The first, second, and third component above corresponds to the
velocity hydrophone aligned along, respectively, the x-axis, the
y-axis, and the z-axis. The last component corresponds to the
pressure hydrophone. may range between (in-
stead of ) because the pressure hydrophone helps
to distinguish between acoustic compressions and dilation. This
is important because acoustic particle motion sensors (such as a
velocity hydrophone), by themselves, suffer a 180ambiguity,
with their plane-wave response given by the “Fig. 8 ” curve.

There exist several essential observations about the vector
hydrophone array manifold. First, one single vector hydrophone
measurement yields a 41 steering vector. Thus, a single
vector hydrophone effectively embodies a four-element array
in and of itself. Second, this vector hydrophone array mani-
fold contains no time-delay phase factor. That is, the vector
hydrophone array manifold, unlike that of a spatially displaced
array, is independent of the impinging signals’ frequency
spectra. This frequency independence is due to the spatial
co-location of the four component sensors that comprise the
vector hydrophone. Third, the Frobenius norm of the first three
components of any source’s steering vector always equal to its
fourth component, regardless of source parameters; the first
three components of gives the three Cartesian direction
cosines. Thus, if the steering vectors of all impinging sources
can be estimated from the received data, then the signal-of-in-
terests’ DOAs can be estimated by normalizing each steering
vector to have norm equal to and to have the last component
to equal to 1.

III. ESTIMATION OF AZIMUTH AND ELEVATION ANGLES

A. Uni-Vector-Hydrophone Data Model

Uni-Vector-Hydrophone ESPRITforms a temporal invariance
via two time-delayed data sets collected from one vector hy-
drophone. That is, theth monochromatic signal impinging on
the vector hydrophone produces two 4 time-delayed (and
possibly overlapping) data sets

for

where the vector hydrophone steering vectoris defined as in
(1), and

(2)

where
th source’s amplitude;
th signal’s frequency;
th signal’s uniformly distributed random phase;

constant time delay between the two sets of time sam-
ples.

Note that the invariance does not depend on the
arrival angles but only on the signal frequency and the time
delay . may be completely arbitrary and isnot con-
stricted by the Nyquist sampling rate to be twice the highest
signal frequency as long as a set of distinct phase delays

are preserved. It is necessary that
. Section V will investigate the spectral

separation needed for source resolution. The present algorithm
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requires no prior knowledge of the value of , although that
information is typically available for all . The above
sinusoid model of the uncorrelated incident signals differ
from that in [10], [19]–[25], and [27], which models the set
of all incident signals as a set of statistically independent and
temporally uncorrelated zero-mean complex-Gaussian random
sequences. Section V will derive and analyze the applicable
nonasymptotic and asymptotic Cramér–Rao bounds (CRBs)
for the uncorrelated sinusoidal model used here.

With a total of impinging signals3 and additive complex-
valued zero-mean, possibly spatio-temporally correlated, noise
at each constituent sensor of the vector hydrophone

(3)

where

(4)

(5)

...
...

. . . (6)

The entire 8 set of collected data measurements is

(7)

where represents the 4 data set sampled at
, and represents the 4 data set sam-

pled at . The present direction finding
problem4 is to determine from
the 8 data set above without anya priori knowledge of

.
In practice, the observations in and may overlap. The

CRB performance analysis in Section V will assume a single 4
data set sampled at , ,

where is the sampling frequency. From, one data subset

3Subspace-based parameter estimation algorithms, such as ESPRIT, attempt
to separate the signal and the noise, respectively, into a signal subspace and a
noise subspace. This leads to the requirement that the number of incident signals
must be less than the maximally achievable rank of the data covariance matrix,
which in the present case equals 4 for the four-component vector hydrophone.
The number of resolvable sources is further limited by the identifiability of the
sources’ steering vectors [15]. It is found in [15] that only up to two arbitrarily
oriented sources can always be uniquely identified, although in many situations,
the number of resolvable sources can be larger. However, ifN is sufficiently
large (say,N = 100), the signal frequencies may first be estimated, and then,
the sources may be separated from each other through a spectral comb filter. The
spectrally separated data may then be processed by this processed algorithm. In
such case, an infinite number of uncorrelated sources with distinct frequencies
may potentially be resolved asN approaches infinity.

4Although the proposed algorithm is to be developed below for the batch
processing mode, real-time adaptive implementations of this present algorithm
may be readily realized for nonstationary environments, using the fast recursive
eigendecomposition updating methods such as that in [13].

is formed containing data sampled at , and
a second data subset is formed containing data sampled at

, where is an integer constant. Analogous
to the case of applying ESPRIT to a uniformly spaced linear
array of identical sensors [7], the proposed algorithm’s perfor-
mance may be best for some .

B. Adapting ESPRIT and TLS-ESPRIT to One Vector
Hydrophone

In this subsection, theESPRIT[5] and thetotal least squares
(TLS) ESPRIT[7] parameter estimation algorithms are adapted
to one vector hydrophone.

Let denote the 8 signal-subspace
eigenvector matrix for the matrix , whose columns
are the principal eigenvectors of associated with the
largest eigenvalues of the matrix. The partitioning ofis such
that and , respectively, represent the top and bottom 4

submatrices of .
For analytical purposes, first consider the noiseless case. It

follows from the model in (3)–(7) that an alternative basis of
the signal subspace is that spanned by the columns of the ma-
trix . This implies the existence of a unique
nonsingular matrix such that

and (8)

Introducing the notation

(9)

Because is a diagonal matrix, its diagonal elements
equal the eigenvalues of . The

columns of represent the corresponding right eigenvectors.
In the noisy case, when and are, respectively, replaced

by the estimates and , the equality in (9) becomes an
approximation. The least-square fit to (9) is determined by

(10)

The TLS fit to the (9) is given by [7]

(11)

where the matrices and are implicitly defined
by the eigen-decomposition of

(12)

where diag , whose diagonal elements are the
eigenvalues of ordered nonincreasingly.

The matrices and are computed by eigen-decomposition
of .

Because in the noiseless case the steering vectors obey the
relation

(13)
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they can, in general, be estimated as

(14)

The factor in the above expression facilitatescoherent
summation of the two sets of signal-subspace eigenvectors
(which differ by the phase factors )
and is pivotal to the proposed algorithm’s performance.

From , the direction cosines may be estimated as follows:

(15)

(16)

(17)

From the above direction-cosine estimates, theth signal’s ar-
rival angles may be estimated as

(18)

(19)

Azimuth-elevation direction finding has thus been performed
withoutanya priori knowledge of the signal frequencies while
using just one solitary vector hydrophone and no planar arrays.
The azimuth angle estimates and the elevation angle estimates
are automatically matched without any additional processing.

The values of need not be known
a priori for univector hydrophone ESPRIT, which also in-
curs no frequency-DOA ambiguity, as would an array of
spatially displaced pressure hydrophones. Such a spatially
displaced array estimates the DOAs through the phase factors

and (where de-
notes the intersensor spacing, andsymbolizes the propagation
speed); thus, must be precisely knowna priori or otherwise
estimated through extra computation in order to estimate the
DOAs unambiguously. In contrast,Uni-Vector-Hydrophone
ESPRITestimates the DOAs by performing a normalization on
each source’s frequency-independent steering-vector estimate
and, thus, suffers no frequency-DOA ambiguity.

This present delay-sampling construction of a temporal
invariance would not be useful with an array of spatially
displaced pressure hydrophones. Such a spatially displaced
array’s steering vectors can still be estimated, but with no
prior knowledge of each signals’ frequency, no closed-form
DOA-estimation solution for using such anarbitrary array of
spatially displaced pressure hydrophones is yet known. Iterative
search methods (such asMUSIC) would become necessary,
resulting in much heavier computational costs.

IV. A LTERNATE CONSTRUCTIONS OF THE

VECTORHYDROPHONE

The present method will also work if any one of the four
constituent hydrophones is taken out from the previously
defined vector hydrophone configuration, rendering the 41

array manifold in (1) to become a 31 array manifold; the
maximum resolvable number of sources may decrease. A
procedure similar to that in Section IV-B produces. If it is
the pressure hydrophone that is removed, (15)–(17) still hold,
but now may range only between instead of

because acoustic compressions and dilation can
no longer be distinguished.

If the x-axis velocity hydrophone is removed, then (15) and
(16) become

and

(20)
If the y-axis velocity hydrophone is removed, the corresponding
equations are

and

(21)
If the z-axis velocity hydrophone is removed, then (15) and (16)
become

and (22)

For cases without either the x-axis or the y-axis velocity hy-
drophone ( ) cannot be distinguished from (

). To avoid problems with this ambiguity, either needs to
be restricted to [0, ) (instead of [0,2 )), or needs to be con-
fined to [0, ) (instead of [0, )) for all . The
omission of the vertical velocity hydrophone avoids direct mea-
surement of the vertical component of the underwater acoustical
particle motion, thereby allowing actual ocean acoustics to be
better modeled as rectilinear. Moreover, ambient oceanic noise
tends to be vertically directional, and therefore, the vertically
oriented velocity hydrophone’s noise level may likely exceed
those at the other component hydrophones. An example of such
a construction of the vector hydrophone is the cardioid [11].

V. NEW CRAMÉR–RAO BOUND EXPRESSIONS FOR

PERFORMANCEANALYSIS

The CRB analysis in [10], [21], [22], and [27] models the set
of all incident signals as a set of statistically independent tem-
porally and uncorrelated zero-mean complex-Gaussian random
sequences. That model is inapplicable to the present scheme
where the set of incident signals are uncorrelated pure sinu-
soids. Moreover, [10], [21], [22], and [27] assume the noise
to be spatio-temporally uncorrelated, which typically is not the
case in underwater acoustics [28]. This section derives and an-
alyzes the nonasymptotic and asymptotic CRBs for each of the
vector hydrophone constructions considered earlier in the pres-
ence of spatio-temporally correlated or uncorrelated noise. Al-
ternate theoretical performance bounds for a vector hydrophone,
other than the CRB, are discussed in [26].

A. For Noise of Arbitrary Spatio-Temporal Correlation

All noise samples , , and
are herein modeled as zero-mean, circular complex Gaussian
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with known spatio-temporal covariance matrix, drawing its
elements from the spatio-temporal covariance function

E (23)

The subsequent exposition will first consider the general case of
having arbitrary spatio-temporal correlation, to be followed

by two special cases of:

1) noise that is first-order auto-regressively correlated in
time but has a time-invariant spatial covariance matrix

diag , where and , respec-
tively, are variances of errors of the velocity and pressure
hydrophones;

2) temporally white noise with time-invariant spatial covari-
ance matrix .

With the AR(1) parameter

(24)

For temporally uncorrelated noise, . For temporally
correlated noise, ; drops to 50% of its
peak value at time lag equal to and to 10% at

. From (24)

(25)

where

...
...

...
(26)

Note that , where is a tridiagonal
matrix

...
...

.. . (27)

Define , where .
[Note that , herein defined as theth signal’s phase in the
middle of the given time interval ( ), differs from the of
(2).] Let vec be a vector consisting of all collected time

samples; thus, , where
, denotes the Kronecker product, and

The Fisher information matrix equals [14]

Re (28)

where elements of the vector are

(29)

(30)

(31)

(32)

(33)

with

and represents the element-wise (Hadamard) product oper-
ator. Representing in a block matrix form

...
... (34)

the ( )th block equals

(35)

For arbitrary but size-compatible vectors, , , and and
matrices and , it holds that

. Hence, using (25) and (28)–(33)

Re (36)

Re

... (37)

The asymptotic behavior of will next
be studied, assuming to be large and the signal frequencies
to be fixed and distinct. The off-diagonal elements of these
matrices, after appropriate normalization, will be shown to
be asymptotically negligible. The asymptotic behaviors of
the above-mentioned matrices are determined by the products

, , and .
For temporally white noise (i.e., and is an identity

matrix), the definition of gives the equa-
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tion at the bottom of the page, where . As a
result, for large , , and

...
...

... (38)

For

(39)

Define the 5 5 normalizing matrix diag
and the nor-

malizing matrix diag . All elements in
the matrices all are asymptotically

, and hence, the matrix is asymptoti-
cally block diagonal. The diagonal of consists
of the elements , and the blocks

(40)

for that have the order , whereas all other
elements have the order . This means, in other words,
that the parameters , , and the triplets ( ) for

are asymptotically decoupled. CRBs for these parame-
ters, which are defined as proper diagonal elements and diagonal
blocks of , are approximately equal to the inverse of ,

, and , respectively. The approximate CRB
expression for is proportional to , as is usual in the fre-
quency estimation, and CRB expressions for the other parame-
ters (including the angles of arrival) is proportional to .

It appears that asymptotic behavior of the CRB is very similar
in the case of temporarily colored noise, which is modeled as
AR(1) with parameter . For

(41)

The approximation in (41) is exact for the entire vector, ex-
cept for its first and the last elements; the first and the last ele-
ments on both sides differ by quantities of order . Because
the vector has length , the above approximation error is of
order in the vector’s norm. It follows that and

, respectively, have the same asymptotic behavior for
large as and up to the constant multiplicative fac-
tors . Hence, for

as compared with , elements of the th source’s
Fisher information matrix that correspond to angles of arrival
are approximately times as large and the corresponding
CRB approximately times as large.

The mean square angular estimation error (MSAE) [10],
[26] represents an alternative estimation performance metric;
its lower bound may be related to the CRB as follows:

MSAE CRB CRB

CRB CRB (42)

Here, CRB and CRB stand for the CRB for and ,
respectively, and they can be found as the second and the third
diagonal elements of .

The CRB of the Cartesian direction cosines may be de-
rived using [14, Th. 3.4]: “Let be a differentiable
function of and have the Jacobian , and (2), and let

be the CRB for estimating . Then, the CRB for
estimating is CRB CRB

.” For the Cartesian direction cosines,
this means that and
CRB CRB , where
CRB is a proper submatrix of CRB .

B. For Spatio-Temporally Uncorrelated Noise

Hereafter in Section V, the additive noise is assumed to be
spatially and temporarily uncorrelated, all velocity hydrophones
to have equal noise variance, and the pressure-hydrophone
to have noise variance . Then, , where
diag . The case of unequal noise variances at the
velocity hydrophones has already been treated in the more gen-
eral expressions in (36) and (37).

Given the above form of , .
is proportional to and represents the information provided
by the constituent velocity hydrophones. is proportional
to and represents the information provided by the pressure

for

for

for

for

for

for
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hydrophone, if present. For example, the upper-left blocks of
these two matrices contain the elements

Re (43)

Re (44)

where contains the elements of corresponding to the ve-
locity hydrophones present in the vector hydrophone. If all three
velocity hydrophones are present, thenconsists of the first
three elements of .

For large , and exhibit the same asymptotic be-
havior as . For the case where the vector hydrophone con-
tains all three velocity hydrophones with equal error variances,
the three vectors , , and are pairwise or-
thogonal. Hence, and are diagonal matrices.

C. CRB for One Vector Hydrophone Consisting of Only Three
Velocity Hydrophones

The diagonal elements of the nonasymptotic information ma-
trix become

Re (45)

Re

(46)

Re

(47)

Re (48)

Re

(49)

As previously shown, the asymptotic CRBs of the signal param-
eters (for large and well-separated frequencies

) are inversely related to the above elements. That is

CRB (50)

CRB (51)

CRB (52)

CRB (53)

CRB (54)

Noting that

CRB (55)

the asymptotic CRBs for the Cartesian directional cosines equal
(56), shown at the bottom of the page. The asymptotic lower
bound for the mean square angular error becomes

MSAE CRB CRB (57)

D. CRB for One Vector Hydrophone Consisting of Three
Velocity Hydrophones Plus a Pressure Hydrophone

The Fisher information matrix for the pressure hy-
drophone data has the (nonasymptotic) diagonal elements

Re (58)

(59)

Re (60)

Re (61)

In the single-source case (i.e., ), the estimated param-
eters are decoupled, and measurements from the pressure hy-
drophone bring no useful information on the arrival angle. In
the case of multiple sources (i.e., ) and a large , the
preceding statement becomes approximately true. Again, the
asymptotic CRBs of , , , , and are the inverses
of the corresponding asymptotic diagonal elements of

CRB (62)

CRB (63)

CRB (64)

CRB CRB

(56)
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CRB (65)

CRB (66)

Note that the asymptotic CRBs for and do not depend
on : the pressure-hydrophone data do not improve the
estimation of and obtained from the three velocity
hydrophones’ data. Moreover, as approaches infinity, the
asymptotic CRBs of , , and converge to those for
the three-velocity hydrophone vector hydrophone. Hence, the
asymptotic CRB and the asymptotic MSAE remain
the same when the pressure hydrophone is absent.

E. Asymptotic CRB for One Vector Hydrophone Consisting of
Two Velocity Hydrophones Plus a Pressure Hydrophone

In contrast to earlier cases where all three velocity hy-
drophones are present, the information from the pressure
hydrophone now becomes necessary for the asymptotic (as

approaches infinity) estimation of the arrival angles. The
estimates of and are still asymptotically decoupled from
the estimates of and but not necessarily from the estimate
of the signal amplitude .

The asymptotic Fisher information matrix of the triad
( ) corresponding to the velocity hydrophones has the
general form in (67), shown at the bottom of the page, where

is composed of those elements of that are present in the
vector hydrophone construction.

If the x-axis velocity hydrophone is absent, we have (68),
shown at the bottom of the page. Because is non-
invertible, the asymptotic CRBs (and, consequently, the vari-
ance) of unbiased estimators are infinite if the information from

the pressure-hydrophone is absent. The asymptotic information
matrix corresponding to the pressure-hydrophone equals

diag

Hence, we have (69), shown at the bottom of the page. Note
that CRB CRB and CRB
CRB .

Similarly, if the y-axis velocity hydrophone is absent, we
have (70), shown at the bottom of the page. As the y-axis ve-
locity hydrophone, instead of the-axis velocity hydrophone is
now absent, the asymptotic CRB may be obtained
from the asymptotic CRB by simply interchanging

and . Moreover, CRB CRB .
If the z-axis velocity hydrophone is absent

CRB

(71)

The asymptotic lower bounds for the MSAEs of these three
constructions equal, respectively

MSAE CRB CRB

(72)

(67)

(68)

(69)

(70)
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Fig. 1. Asymptotic CRB( ) with all three velocity hydrophones with or
without a pressure hydrophone.

Fig. 2. Asymptotic CRB( ) without the x-axis velocity hydrophone but with
a pressure hydrophone.

Fig. 3. Asymptotic CRB( ) without the y-axis velocity hydrophone but with
a pressure hydrophone.

MSAE CRB CRB

(73)

MSAE CRB CRB

(74)

Figs. 1–4 plot, in decibels of radians, the asymptotic CRB,
respectively, for all five aforementioned vector hydrophone
constructions, and Figs. 5–8 plot the corresponding asymptotic
CRB . Note that the horizontal axes in Fig. 4 are oriented
differently from the other seven figures. The additive noise is
spatio-temporally uncorrelated.

The following qualitative trends may be observed from these
eight figures.

Fig. 4. Asymptotic CRB( ) without the z-axis velocity hydrophone but with
a pressure hydrophone.

Fig. 5. Asymptotic CRB(�) with all three velocity hydrophones with or
without a pressure hydrophone.

Fig. 6. Asymptotic CRB(�) without the x-axis velocity hydrophone but with
a pressure hydrophone.

1) does not affect the asymptotic CRB for any
vector hydrophone construction, as does not af-
fect the fraction of signal energy distributed on the x-y
plane or parallel to the vertical axis.

2) does not affect the asymptotic CRB for those
vector hydrophone constructions with both an x-axis
and a y-axis velocity hydrophone, for the same reason
given above. However, when one of the two hori-
zontal velocity hydrophones is absent, the asymptotic
CRB increases significantly when becomes
aligned along the Cartesian coordinate axis without
a velocity hydrophone. In such a case, the horizontal
component of the incident signal’s energy become
unobservable by the vector hydrophone. Hence, the
estimation of the azimuth angle becomes impossible,
as indicated by the very large asymptotic CRB
value for such cases in Figs. 6 and 7. Note that Fig. 6
is identical with Fig. 7 when is shifted by 90.
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Fig. 7. Asymptotic CRB(�) without the y-axis velocity hydrophone but with
a pressure hydrophone.

Fig. 8. Asymptotic CRB(�) without the z-axis velocity hydrophone but with
a pressure hydrophone.

3) The asymptotic CRB increases as decreases
for all five vector hydrophone constructions. This is
because a smaller implies a small fraction of signal
energy lies on the x-y plane, thereby decreasing the
signal-to-noise ratio on the horizontal plane.

4) The asymptotic CRB is independent of when
all three velocity hydrophones are present, with or
without the pressure hydrophone. This is because the
elevation angle information is encapsulated in the
received data in two complementary ways:

a) the signal’s energy along the vertical axis;
b) the signal’s energy along the x-y plane to be sub-

tracted from the signal’s overall energy as mea-
sured by the pressure hydrophone or by all three
velocity hydrophones.

5) The asymptotic CRB increases as decreases
when either of the two horizontal velocity hydrophones
is absent. In such cases, the elevation angle informa-
tion is encapsulated only as in (a) through the nonlinear
trigonometric function , which has a flat slope
with respect to when approaches zero.

6) The asymptotic CRB increases as increases
toward 90 when the vertical velocity hydrophone is
absent. In such a case, the elevation angle informa-
tion is encapsulated only as in (b) through the func-
tion , which must
lie between 0 and 1. As increases toward 90, the

in has
flatter slopes. This means that

becomes less accurately estimated as
increases toward 90.

Fig. 9. RMS nonasymptotic CRB for the direction cosines versus the
separation in the incident sources’ digital frequencies: two closely spaced
sources withf ;  g = f75 ; 80 g,f� ; � g = f35 ; 30 g, b = b = 1,
� = 0:1, and 100 snapshots with uniform sampling frequency at 10 in each
of 200 independent experiments.

Figs. 1–8 together suggest that the three-velocity hydrophone
construction gives the best asymptotic CRBs and requires the
least number of constituent hydrophones. However, when only
the azimuth angle needs to be estimated, a comparable asymp-
totic CRB may be obtained using the vector hydrophone
construction with the two horizontal velocity hydrophones plus
a pressure-hydrophone, with the advantage that the measured
data will better conform to a rectilinear model for the oceanic
dynamics. On the other hand, only the four hydrophone vector
hydrophones can handle up to four incident sources using the
proposed algorithm.

Fig. 9 shows the CRBs dependence on the incident sources’
frequency separation in a two-source scenario at various SNRs.
TheasymptoticCRB cannot be used here because the signal fre-
quencies are not well separated. Instead, the CRB is computed
by inverting the exact information matrix in (28). Moreover, be-
cause this computation depends on the signals’ initial phases
[which appear in in (37)], the data in Fig. 9 are averaged
from 200 independent trials, with the initial phases uniformly
distributed in . The CRB for the four direction-cosine es-
timates are combined in the root-mean-square (RMS) CRB by
taking the square root of the sum of the squares of the four in-
dividual CRBs. The additive noise is spatio-temporally uncor-
related.

VI. M ONTE CARLO SIMULATIONS OF PROPOSEDALGORITHM

Fig. 10 plots the root-mean-square (RMS) standard de-
viations, and Fig. 11 plots the RMS biases ofunivector
hydrophone ESPRITsdirection-cosine estimates of Monte
Carlo simulations in a scenario involving three uncorrelated
monochromatic sources impinging on a single four-component
vector hydrophone. A source’s root-mean-square estimation
standard deviation is the square root of the mean of square of
the estimation standard deviations for that source’s x-axis and
y-axis direction cosines. A source’s RMS estimation bias is
similarly defined. The incident source’s parameters are given
in Fig. 9’s caption. Their direction-cosines equal ,

, , , , and .
The additive noise is spatio-temporally uncorrelated and
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Fig. 10. Univector hydrophone ESPRITsRMS estimation standard
deviationsfû ; v̂ ; k = 1; 2; 3g at various SNRs. Three uncorrelated
monochromatic sourcesf ;  ;  g = f86:1 ; 72:7 ; 83:5 g ,
f� ; � ; � g = f61:9 ; 45:4 ; 28:9 g, andb = b = b = 1, baseband
digital frequenciesff ; f ; f g = f:55; :95; :15g impinge on a vector
hydrophone, SNR is relative to unity signal power, and� = 0:1. Eighty
snapshots with uniform sampling frequency of 10 in each of 500 independent
experiments.

Fig. 11. Univector hydrophone ESPRITs RMS estimation bias of
fû ; v̂ ; k = 1; 2; 3:g at various SNRs. Same settings same as in Fig. 10.

complex Gaussian; the SNR is defined relative to each source.
With the smallest difference among thes and among the s
being 0.20, the proposed algorithm successfully resolves all
three sources with high probability at SNRs above 0 dB. The
nonasymptotic RMS CRB is also plotted in Fig. 10. Because
the nonasymptotic CRB depends on the sources’ temporal
phases , the CRBs plotted in Fig. 10 are the
average of 500 Monte Carlo runs, each with its statistically
independent . Note that the estimation biases
are more than an order of magnitude less than the standard
deviations, thus supporting earlier claims that this algorithm
yields asymptotically unbiased estimates.

Fig. 12 compares the performance ofunivector hydrophone
ESPRIT(using a three-velocity hydrophone vector hydrophone)
with that ofESPRITusing an L-shaped half-wavelength spaced5

array of variable number of pressure-hydrophones, half of
which lie along the x-axis, and the other half along the y-axis.
The signal scenario involves two uncorrelated monochromatic
sources with spatio-temporally uncorrelated complex-Gaussian
additive noise, as specified in the figure’s caption. The two sets
of Cartesian direction cosines are matched usinga priori source
information. That information is, of course, not availablea

5The half-wavelength spacing is with respect to the transmission frequency,
which is herein assumed to greatly exceed any difference in baseband digital
frequencies between the incident sources.

Fig. 12. Univector hydrophone ESPRITversusESPRITon an half-wavelength
spaced L-shaped array of pressure-hydrophones. Two incident sources with
u = 0:2; u = 0:1; v = 0:1; v = 0:2 , baseband digital frequencies
f = 0:60; f = 0:95; SNR = 20dB. SNR is relative to unity signal power
� = 0:1. One hundred snapshots with uniform sampling frequency at 10 in
each of 500 independent experiments.

Fig. 13. CRB and proposed algorithm’s MSAEs with one to four statistically
independent sinusoidal sources in spatio-temporally uncorrelated noise, plotted
againstN .

priori ; the pressure hydrophone scheme thus enjoys an advan-
tage on this point over the proposed scheme.6 The vertical axis
in Fig. 12 plots the root-mean-square error (RMSE) of each
of the direction finding approaches. The RMSE is defined as
the square root of the sum of the estimation variance and the
square of the estimation bias. To match the proposed scheme’s
performance, the spatially displaced pressure-hydrophone
array needs five elements. Fig. 12 also clearly shows that the
spatially displaced pressure hydrophone array fails to resolve
these two sources if limited to the same number of hydrophone
elements (i.e., three) as in the proposed scheme.

Fig. 13 plots the one-source, two-source, three-source, and
four-source MSAEs and the CRB versus. The Cartesian
direction cosines of the four equal-power sources (when
all present) are along the x-axis and

along the y-axis, with corresponding
digital frequencies at . The additive
noise is spatio-temporary uncorrelated with 20 dB SNR.
The raw data, which is regularly time sampled at the vector
hydrophone, are segmented into two temporally overlapping
subsets, with equal to ten sampling periods for but

6This comparison between a vector hydrophone and a pressure hydrophone
array needs to be understood by recognizing that a velocity hydrophone in-
volves substantially more complex hardware than even a pair of pressure hy-
drophones. The robust and accurate suspension of a velocity hydrophone ne-
cessitates an intricate mechanical support mechanism. Co-locating two or more
orthogonally oriented velocity hydrophones presents a very challenging hard-
ware design problem.
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Fig. 14. Proposed algorithm’s MSAE with one sinusoidal source in AR(1)
temporarily correlated additive noise plotted against� andN .

Fig. 15. Proposed algorithm’s MSAE with two statistically independent
sinusoidal sources in AR(1) temporarily correlated additive noise plotted
against� andN .

Fig. 16. Proposed algorithm’s MSAE with three statistically independent
sinusoidal sources in AR(1) temporarily correlated additive noise plotted
against� andN .

one sampling period for . There exist 100 independent
Monte Carlo runs for each MSAE data point. The MSAE of the
proposed algorithm is near optimum (very close to the CRB) for
all in the single-source scenario. As the number of sources
increase, the proposed algorithm approaches optimality as
increases.

Figs. 14–18 investigate the proposed algorithm’s perfor-
mance when the additive noise has AR(1) temporal correlation.
The proposed algorithm’s actual MSAEs are plotted in
Figs. 14–17 versus and , respectively, for the cases
involving one, two, three, or four statistically independent
sinusoidal sources. The corresponding approximate CRB (i.e.,
the CRB for multiplied by with defined
in (41)), which is essentially identical for , is
plotted in Fig. 18. Referring to Fig. 18, the CRB for the AR(1)
noise is found to be increasing function of. The proposed

Fig. 17. Proposed algorithm’s MSAE with four statistically independent
sinusoidal sources in AR(1) temporarily correlated additive noise plotted
against� andN .

Fig. 18. CRB corresponding to the MSAE’s in Figs. 14–17.

algorithm (see Figs. 14–17) very closely approximates the
CRB (see Fig. 18) in the single-source case for alland .
For multiple sources, the proposed algorithm is still very close
to the CRB if the noise is only moderately colored withnear
zero (cf. Fig. 13). The difference between the actual MSAE
and the CRB is more apparent for highly correlated noise, for
negative ,7 and for cases with more sources.
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Quasi-Fluid-Mechanics-Based Quasi-Bayesian
Cramér–Rao Bounds for Deformed Towed-Array

Direction Finding
Petr Tichavský, Member, IEEE, and Kainam Thomas Wong, Senior Member, IEEE

Abstract—New quasi-Bayesian (hybrid) Cramér-Rao bound
(CRB) expressions are herein derived for far-field deep-sea
direction-of-arrival (DOA) estimation with a nominally linear
towed-array that 1) is deformed by spatio-temporally correlated
oceanic currents, which have been previously overlooked in the
towed-array shape-deformation statistical analysis literature,
2) is deformed by temporally correlated motion of the towing
vessel, which is modeled only as temporally uncorrelated in
prior literature, and 3) suffers gain-uncertainties and phase-un-
certainties in its constituent hydrophones. This paper attempts
to bridge an existing literature gap in deformed towed-array
DOA-estimation performance analysis, by simultaneously a)
incorporating several essential fluid-mechanics considerations to
produce a shape-deformation statistical model physically more
realistic than those previously used for DOA performance analysis
and b) rigorously derive a mathematical analysis to characterize
quantitatively and qualitatively the DOA stimation’s statistical
performance. The derived CRB expressions are parameterized in
terms of the towed-array’s physically measurable nonidealities for
the single-source case. The new hybrid-CRB expressions herein
derived are numerically more stable than those in the current
literature.

Index Terms—Acoustical signal processing, array signal
processing, direction-of-arrival estimation, marine telemetry,
parameter estimation, sonar arrays, sonar signal processing,
underwater acoustic arrays.

I. INTRODUCTION

A towed-array consists of an acoustically transparent and
neutrally buoyant cable of hydrophones hauled behind a

surface ship or a submerged vessel. A towed array may extend
for several tens of meters to several hundreds of meters. The
towed array’s nominally linear geometry may be arbitrarily
distorted by the towing vessel’s varying speed and transverse
motion, by the array’s non-neutral buoyance and nonuniform
changes in density, and by hydrodynamic effects plus oceanic
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swells and currents. The resulting snake-like deformation from
the array’s nominal linearity can lead to critical degradation in
the accuracy of arrival angle estimation/tracking, beamforming,
and imaging because all these signal processing operations are
predicated on a sufficiently accurate (a priori or estimated)
model of the array’s inter-hydrophone spacings.

Towed-array deformity has been investigated by researchers
from several complementary perspectives: Towed arrays’ geo-
metric deformation has been empirically measured [13], [24],
[35], computer simulated [39], and theoretically predicted based
on fluid mechanics and oceanic physics [1]–[3], [7], [8], [11],
[12]. A wealth of array-shape calibration algorithms have been
devised using cooperative sources from known arrival-angles (in
“aided calibration”) [23], [34], [38], by exploiting noncoopera-
tive sources from unknown arrival angles (in “self-calibration”)
[9], [10], [14], [18], [22], [25], [29], [36], or by attaching on the
towed-array nonacoustic positioning-devices (such as heading-
sensors, depth-sensors and compasses to estimate the array’s
displacements along the array-length axis, the vertical trans-
verse axis and the horizontal transverse axis, respectively) [8],
[16], [21], [24], [27]. The present work provides a quantitative
analysis of bearing-estimation accuracy for deformed towed-ar-
rays, assuming array shape-deformation information is avail-
able from neither cooperative calibration sources nor from nona-
coustic positioning devices.

A. Literature on Modeling Towed-Array Shape-Deformation

The towed-array shape-deformation modeling literature
generally falls into two categories: 1) fluid-mechanics-inten-
sive models that are physically accurate but mathematically
intractable for statistical signal parameter-estimation perfor-
mance analysis and (2) mathematically simple models that
overlooks most (if not all) fluid-mechanics-based considera-
tions. The present manuscript aims to make one initial step
toward bridging this crucial literature gap between 1) and 2)
above by incorporating certain (admittedly, not all) essential
fluid-mechanics considerations into the statistical measurement
model, while drawing out in detail with rigorous mathematics
a comprehensive (admittedly, not exhaustive) analysis of what
this enhanced model implies in the statistical performance of
direction-of-arrival (DOA) estimation.

1) Fluid-Mechanics-Intensive Models: Transverse defor-
mation/vibration of a thin flexible cylinder, towed by a vessel,
has been shown to obey a fourth-order partial differential
equation known as the Paidoussis equation [1]–[3], [11], [12].
This equation, which was first applied in the towed-array

1053-587X/04$20.00 © 2004 IEEE
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context in [7] and [8], describes the mechanical propagation of
array-deformation down the array’s length. The validity of this
theoretical model was verified under field conditions [2].

Fluid-mechanics-based array deformation models have been
used to investigate only array shape calibration in [21], [24],
[36], and [38] but not for the present objective of DOA-es-
timation Cramér-Rao bound (CRB) analysis. Moreover, these
models from [21], [24], [36], and [38] overlook the oceanic cur-
rents’ statistical influence in the Paidoussis equation on array
shape deformation. These earlier works also model the towing
vessel’s movement as temporally uncorrelated, which may be
physically unrealistic for high time-sampling rates. In contrast,
the present analysis offers more realism by allowing arbitrary
temporal correlation (while assuming statistical stationarity) in
the towing vessel’s motion.

2) Mathematically Simple Models With Little Fluid Me-
chanics: A wealth of CRB analysis exists in the antenna-array
signal-processing research literature on DOA estimation with
uncertainties in the inter-antenna spacings. However, this
antenna-array literature presumes spatially1 uncorrelated and
spatially stationary locational uncertainties from sensor to
sensor. Unfortunately, such assumptions are manifestly invalid
for a towed array, whose elements are strung up on a cable.
Spatial decorrelation, in the towed array context, would imply
rather implausibly that an upstream hydrophone’s positional
deviation has no effect on the downstream hydrophones’
positional deviations. Spatial stationarity would unrealistically
imply that the hydrophone secured at the tow point likely has a
positional deviation comparable with those hydrophones at the
tow cable’s unsecured free end.

Among all DOA estimation CRB work accounting for spa-
tial correlation among the sensors’ dislocation (see [4], [5], [9],
[10], [14], [17], [18], [20], [25], [26], [28], [29], [40]), none uses
an array-deformation model rigorously derived from fluid me-
chanics. Ad hoc statistical models for array-shape deformation
include [4], [9], [10], and [17], which assume as statistically
uncorrelated the transverse and array-length axis positional per-
turbations. In [4], the transverse perturbations to be spatially
correlated from hydrophone to hydrophone with a dependence
inversely exponential to the cable length connecting the two hy-
drophones, but without rigorous justification, are modeled. In
[9] and [10], the prior distribution for both the transverse un-
certainties and the array-length axis uncertainties is assumed
to be spatially uncorrelated Gaussian, which is an assumption
that unrealistically implies that hydrophones near the tow point
have positional variances comparable with those at the cable’s
free end. The rudimentary model of [17] postulates nothing be-
yond the aforementioned uncorrelated condition between the
transverse and array-length axis positional perturbations. An-
other ad hoc deformation model is used in [28], without any
physics-based justification, involving a transverse perturbation
whose standard deviation increases quadratically downstream
and a linearly increasing perturbation along the array-length
axis. The spatial correlation and the transverse/array-length cor-
relation in [28] are both 100% correlated.

The more sophisticated deterministic piecewise-linear model
presumes the relative angles between adjoining piecewise-linear
segments to be deterministic unknown constants. For example,

1“Space” as spanned by the array’s geometrical axes.

[22], [23], [29], [33], [34], and [38] use the deterministic piece-
wise linear shape deformation model for array shape calibra-
tion performance analysis. A stochastic piecewise-linear model,
assuming the relative angle between adjoining piecewise-linear
segments to be Gaussian and (implausibly2 as) spatially uncor-
related, is used in [29] for DOA estimation.

Moreover, much of the above-mentioned deformed-array
bearing-estimation literature (all except [17], [28], and [29]
and unlike the present work) unrealistically assumes that no
uncertainty exists in the hydrophone’s gain and phase re-
sponses. This work attempts to be comprehensive in accounting
simultaneously for diverse array nonidealities.

B. CRB Literature on Deformed-Array DOA Estimation

The DOA estimation lower bounds herein derived are quasi-
Bayesian (hybrid) CRBs that characterize the best standard de-
viation obtainable using any unbiased estimator of a vector pa-
rameter. The CRB may serve as a performance metric in towed-
array design with any required level of bearing estimation accu-
racy.

The terms “quasi-Bayesian” and “hybrid” aim to contrast
against the standard CRB to signify that the vector-parameter
here has a deterministic subvector and a random nuisance-pa-
rameter subvector. The former consists of the incident sources’
unknown but to-be-estimated angles of arrival. The latter does
not need to be estimated but characterizes the array-shape defor-
mations, the phase/gain uncertainties of the individual acoustic
sensors, and other factors. The “hybrid” (quasi-Bayesian)
CRB may be defined as a proper submatrix of the overall
vector-parameter’s CRB matrix, which is equal to the inverse
of the corresponding Fisher information matrix. The bound
depends on the a priori distribution (uncertainty) of the random
subvector. It depends only on the signal/noise statistical model
but not the particular estimation algorithm method used; how-
ever, the quasi-Bayesian CRB may be attained by an maximum
a posteriori (MAP) estimator of the parameter-estimation
problem [29].

The present analysis allows a broad class of Bayesian-like
statistical models parameterized with physically measurable
quantities. For example, certain independent parameters
[describing the tow-point induced (TPI) motion and oceanic
currents] in the Paidoussis equation are herein characterized
as stochastic with known prior distributions instead of as
deterministic unknowns. This quasi-Bayesian approach is
advantageous because the underlying fluid mechanical and
oceanic physical processes (that cause the array’s geometric
deformation) can be neither exactly measured nor precisely
estimated. Hence, they would best be modeled as stochastic
phenomena. As oceanic engineers gather new data and up-
date the statistics of such TPI-motion and oceanic current,
the statistical properties of the Bayesian parameters may be
estimated and substituted in the CRB formulas presented
in this paper. Lower bounds of the deformed towed-array’s
DOA-estimation variance can then be obtained along with the
general expressions for the quasi-Bayesian Cramér-Rao lower
bound, which is derived in [29]. Among all prior work cited
in the preceding paragraphs, only [4], [9], [10], [17], [28],

2See further discussion in the following paragraphs.
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and [29] also use a Bayesian approach, but (as discussed in
the preceding subsection) none of these papers model array
shape deformation based on rigorous fluid mechanics, as in the
present work.

This paper is partly based on the generic CRB expression
derived in [29] for sensor-array estimation under array uncer-
tainties. Because this expression might be numerically unstable
when the data-length approaches infinity or when the covari-
ance matrices of array dislocations are small, this present paper
derives an alternative expression that is numerically more stable.
This new expression allows easy computation of the limit-CRB
for approaching infinity. As an example, the CRB is herein
computed in the case of a single source. The main contribution
of the paper, however, consists of computing physically mean-
ingful covariance matrices of array dislocations, which was dis-
cussed in the previous subsection.

II. MATHEMATICAL DATA MODELS FOR FAR-FIELD SOURCES

PROPAGATING THROUGH A DEEP-SEA CHANNEL

This section introduces the mathematical and statistical data
models involved in far-field deep-sea direction finding. far-
field narrowband sources impinge on an -hydrophone array as
plane waves without time-delayed multipaths to produce at time

the measured data vector:

(1)

The th column of the matrix represents
the th source’s steering vector, which has as components3

(2)
where ( ) represent the Cartesian direction-cosines
of the th incident source, and , respectively, denote
the th sensor’s unity-mean gain-perturbation and zero-mean
phase-perturbation, ( ) symbolize the three-dimen-
sional (3-D) Cartesian position coordinates of the th sensor,
and denotes the wavelength. The th element in the
vector represents the th frequency-down-converted
incident temporal signal and is modeled as a temporally uncor-
related zero-mean complex-valued circular-Gaussian stochastic
process with having the a priori unknown covariance
matrix . The th element in the vector refers to the
spatio-temporally uncorrelated complex-valued additive noise
at the th hydrophone, with a priori unknown variance .

The vector contains as its elements the to-be-es-
timated unknown deterministic signal parameters, e.g., the az-
imuth and/or elevation angles or, equivalently, the Cartesian di-
rection cosines. The nuisance vector consists of the
nuisance parameters — . Fur-
ther, define , ,

, , and .
These stochastic parameter vectors are modeled as mutually in-
dependent and real-valued Gaussian distributed, with a priori
known nominal means , , , , , and a priori known
covariance matrices , , , , and . Hence,

3The index k will be dropped in the case of a single source.

may be represented as a real-valued, Gaussian, stochastic vector
with a priori known mean and a priori known covariance ma-
trix . To summarize, the present data model involves the un-
known stochastic entities of , and , plus the unknown
deterministic entities of , , and . However, only needs
to be estimated.

III. NEW CRB EXPRESSION COMPATIBLE WITH VARIOUS

TO-BE-SPECIFIED QUASI-BAYESIAN MODELS OF ARRAY

NONIDEALITIES

In [29], there is a “generic” quasi-Bayesian CRB expression
applicable to far-field deep-sea nonideal array direction finding.
Building on [29], this section will develop CRB expressions that
1) are numerically more stable and applicable to any number of
incident sources, 2) reveal the multisource CRBs asymptotic be-
havior as the data-length approaches infinity, and 3) link to
the physical quantities parameterizing various array nonideali-
ties in the single-source case. From [29]:

CRB

(3)

where

Re

real-valued in size (4)

Re

real-valued in size (5)

Re

real-valued in size (6)

vec vec

complex-valued in size (7)

vec vec

complex-valued (8)

complex-valued in size (9)

complex-valued in size (10)

complex-valued in size (11)

where denotes the Kronecker product, represents the theo-
retical value of , and the derivatives in (7) and (8) are evaluated
for and .

The CRB expression in (3) might be numerically unstable
because is rank-deficient, as represents a projection op-
erator such that . This means that and

are both rank-deficient, and consequently, the to-be-inverted
term might be ill-conditioned for large .
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Assume that has full column rank. Then, the projection
operator has rank and

(12)

where consists of the linearly independent columns
of that span the column space of . Usually, can be
formed from the first columns of , i.e., ,
where

(13)

Put

(14)

so that of (9) may be written as . Then

Re Re

Re

Re

Re Im

Re Im
Im Re

Re

Im

(15)

where denotes the identity matrix of size , and

Re Im (16)

Re Im
Im Re

(17)

Similarly, it can be shown that

(18)

(19)

where

Re Im (20)

Inserting (15), (18), and (19) in (3) and applying the ma-
trix inversion lemma

, which holds for any size-compatible
matrices , , and , and providing all relevant inverses exist

CRB

(21)

Note that of (17) is regular, provided that in (14) is
regular because would then be regular as well.
Thus, the new CRB expression in (21) is numerically stable for
large , unlike (3).

Fig. 1. Coordinate system for a towed-array of hydrophones with one far-field
incident source.

The limit-CRB for going to infinity easily follows:

CRB CRB

(22)
The limit has the interpretation that it describes the best achiev-
able residual variance of the DOA-estimate due to array uncer-
tainties.

To detail the impact of array-shape uncertainties and of the
gain-phase uncertainties on direction-finding accuracy, the
subsequent analysis assumes a single incident source (i.e.,

) for mathematical simplicity. Without loss of generality,
the nominally linear towed array is assumed to align along
the -axis; hence, the -axis Cartesian direction-cosine needs
be estimated. That is, ; see Fig. 1. From (2),

, where denotes the element-wise product,
and .

Further assume that uncertainties in the hydrophones’ gains,
phases, and locations are mutually independent. Then, random
deviations of around its nominal value have the a priori
covariance matrix

diag (23)

For the above-defined

(24)

where denotes the element-wise product, and

diag diag (25)

where

(26)

Note that of (14) becomes the scalar

(27)
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In (27), the matrix inversion lemma is used along with
. The matrix , containing the basis of the column-space of
, may be chosen arbitrarily. However

diag (28)

would be a convenient choice,4 giving

diag
diag

diag

diag
(29)

where

(30)

diag (31)

After some algebra, (20), (17), and (16) can be rewritten as

(32)

(33)

(34)

Combining (32) and (23)

(35)

where the blocks denoted by the asterisks are not displayed, and

(36)

Inserting (32)–(35) in (21) gives

CRB

(37)

The CRB depends on the hydrophones’ gains by means of the
matrix defined in (31). It is independent of the uncertainties
in the hydrophones’ gain but depends only on , which
combines the hydrophones’ phase uncertainties and location un-
certainties. This is because all arrival-angle information is con-
tained in the phase of the data; cf. (2). For multiple sources (i.e,

), these uncertainties have more complex interactions;
and the general formula in (21) would be necessary.

gives the asymptotic CRB

CRB (38)

4The exponential term in (28) is allowed because the scaling of the columns
of B is arbitrary due to the projection in (12)

As expected, the limit-CRB is independent of the additive
noise’s variance , which drops out along with of (27).
The CRB does depend on the array geometry not only through
the vector of sensor coordinates but through the error co-
variance matrix as well, which incorporates the sensor
location uncertainties.

IV. NEW FLUID-MECHANICS-BASED STATISTICAL MODELS OF

A NOMINALLY LINEAR TOWED ARRAY’S SHAPE DEFORMATION

The derivation of the Paidoussis equation in [21] is herein re-
visited in order to incorporate a new term for the fluid flow’s
transverse speed and normal speed caused by oceanic streams
and swells. The fluid flow’s instantaneous normal speed is mod-
eled as an homogenous stationary Gaussian random field with
known space-time correlation structure, which may be mea-
sured offline and tabulated for different field conditions. This
Gaussian assumption is for mathematical simplicity and is not
unreasonable because statistical distributions with longer “tails”
(thereby implying a higher probability for very high fluid-flow
speeds) can hardly be observed here due to fluid viscosity.

The towing vessel transversal motion represents another
cause of array deformation. Already accounted for in the
original Paidoussis equation, the towing vessel’s transversal
motion is herein assumed to be due to the vessel’s small random
maneuvers and is modeled as a Gaussian random field with
known space-time correlation structure (which may be mea-
sured and tabulated off-line) and as stochastically independent
of the fluid flows along the array.

The Paidoussis equation is discretized both in time and in
space and consequently used to derive physically meaningful
covariance matrices of the sensor location uncertainties, ,

, and for use in the quasi-Bayesian CRB. The fol-
lowing developments will consider only small array-shape de-
formations. Since the tow-cable is assumed neutrally buoyant,
the horizontal deformation and the vertical deformation obeys
the same differential equation (but possibly with different con-
stants for the two directions). Hence, with no loss in generality,
the subsequent analysis will express only the horizontal defor-
mation’s in terms of physically measurable constants. Sub-
sequent simulation examples will assume that . Fi-
nally, relative longitudinal contractions of the array can be ne-
glected thanks to the small array-shape deformation assumption.
It follows that .

A. Generic Model of Towed Array Fluid Mechanics

Two causes exist for towed-array deformation: 1) the
towing-vessel’s transverse motion or varying speed and 2)
oceanic swells and currents. The Paidoussis equation [1]–[3],
[7], [8], [11], [12] describes the fluid mechanics through which
the two above-mentioned factors affect the shape of a towed
array. More precisely, the Paidoussis equation describes the
dynamical behavior of a flexible and cross-sectionally thin
cable towed through a certain fluid:

(39)
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Fig. 2. Enlarged segment of the deformed towed array.

The notation is as follows:
towed-array’s transverse displacement at time and
location along the array’s length;
towed-array’s per-unit-length mass;
tow-cable’s spatially variable tension;
inviscid force due to the acceleration of the tow-
cable’s virtual mass;
per-unit-length viscous force acting on the
tow-cable in the normal direction;
similar force acting in the tangential direction;
tow-cable’s bending stiffness.

From [11] and [38],

(40)

(41)

(42)

(43)

with these notations:
displaced fluid’s per-unit-length mass;
towed-array’s cross-sectional diameter;
towed-array’s normal drag coefficient;
towed-array’s tangential drag coefficient;
form drag at the trailing end ( for a free end);
tow-vessel’s speed along the positive -axis;
tow-cable’s speed relative to distant fluid;
angle between the relative velocity of the sur-
rounding fluid flow and the local tangent of the
cable.

depends on but also on the fluid flow’s transverse
speed and normal speed due to the ocean
streams and swells (see Fig. 2).

To summarize, the inputs to the fourth-order partial differ-
ential equation in (39) are , , and , under the
TPI-motion defined boundary condition , and the output
is : the towed-array’s space-time deformed geometry.

Prior researchers (to the best of the authors’ knowledge) have
overlooked the statistical influence of oceanic currents on array
shape deformation in the Paidoussis equation. One contribution

of the present work is to rigorously characterize the statistical
effects of and in the Paidoussis equation on the
hydrophones’ dislocation.

Under the reasonable assumption that the tow-speed
greatly exceeds the surrounding water’s flow velocity (i.e.,

, ), it holds that and
. The latter approximation means that hydrophone

dislocation is substantial only perpendicular to, but not along,
the array axis. Referring to Fig. 2

(44)

(45)

(46)

Assuming that the tow-cable is sufficiently flexible to neglect
the bending stiffness term in (39), the fourth-
order Paidoussis equation in (39) may be reduced to second-
order:

(47)

Moreover, because , the subsequent analysis will ignore
those terms in the above equations that are not inversely propor-
tional to . This second approximation results in the small-di-
ameter Paidoussis equation5 [21]:

(48)

The subsequent analysis will model as a two-di-
mensional random field of Gaussian distribution, with zero
mean and an a priori known spatio-temporal covariance
function. This random field is modeled as statistically sta-
tionary over space (i.e., array length) and time; hence,

, the mathemat-
ical form of which reflects oceanic conditions and may be
empirically determined. Moreover, this random field may be
statistically correlated over time; an illustrative case of AR(1)
will be analyzed in detail.

B. Discretizing the Small-Diameter Paidoussis Equation

Toward solving the above partial differential equation, the
space-time discretization in [21] and [38] is herein adopted to
represent array shape deformation as a finite-dimensional state-

5The small-diameter Paidoussis equation in [21] does not include the
�v (t; x � tU) term in (48) because [21] neglects the effects of oceanic
currents.
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space, with the towed-point induced temporal motion and the
oceanic currents’ space-time behavior as the system’s driving
inputs. Referring to Appendix A for details

...
...

...
...

(49)

where represents the transition matrix, denotes the dis-
crete-time index, symbolizes the number of discretization
steps along the array’s length, and and

, respectively, represent the discretization step
sizes in space and time. The stochastic vector stands for
tow-point induced (TPI) motion, where is a
statistically stationary random sequence. Although [21] and
[38] model as a temporally uncorrelated noise
sequence, this present work will model in the
mathematically more general and physically more realistic
form of a temporally correlated random sequence. The sto-
chastic vector , which is not included in [21] and [38]6

but is newly introduced in this present work, represents the sea
water’s spatio-temporally correlated currents.

This above discretization scheme serves only as a mathemat-
ical technique to solve the partial differential equation in (47)
but imposes no presumption on the physical behavior of the
towed array. This discretization is to be distinguished from the
piecewise linear model of array deformation [22], [23], [29],
[33], [34], [40]. The latter array model assumes the towed array
to behave like a concatenation of rigid linear segments, jointed
at arbitrary angles. The above discretization makes no piecewise
assumption regarding array deformation.

Although the transition matrix is strictly speaking a tridiag-
onal matrix (see Appendix A), empirical researchers [21], [24],
[36] find it useful to use the first-order approximation

(50)

where (with ) denotes the damping over
a length for TPI motion propagating down the array’s length,
and

(51)

With respect to the formulation of (50) and (51) developed in
[21], [36], and [38], the present paper offers the following new

6Instead, [21] and [38] have a statistically stationary and spatio-temporally
uncorrelated driving input as a “catch-all” function to include all modeling er-
rors.

insight: The length-dependent damping coefficient is physi-
cally related to such that for
any arbitrary positive numbers and ; hence, must
take on the mathematical form of an exponential function of ,
i.e.,

(52)

when represents an empirically measurable constant depen-
dent only on the sea water’s and the array’s physical properties,
namely, on and . A smaller means less damping of
towed-point induced or ocean-induced transverse motion along
the array’s length. For notational simplicity, the argument
will be omitted from wherever possible.

C. Solving for the Towed-Array’s Space-Time Shape
Deformation

This subsection advances an original solution to (49) for
and that is stationary and stochastically independent. Note
that the tow-point’s transverse displacement has been empiri-
cally determined to propagate down the array at close to the
tow-boat’s speed with little damping [21], [36]. Equation (49)
has a bounded (in the least square sense) solution , provided
that for some matrix norm . Hence

(53)

For the in (50), the condition is equivalent to .
From the independence assumption for and , the

hydrophones’ location uncertainties have the following spatio-
temporal covariance

cov cov cov (54)

The hydrophones’ dislocation covariances may thus be deter-
mined once the specific form of the above two right-hand-side
terms are known, perhaps from empirical measurements or
databases. The above entities are not functions of because of
the temporal stationarity assumption.

The towing-vessel’s motion and the oceanic currents repre-
sent statistically independent inputs to the towed-array system
in (47) and (53); hence, the system’s output equals (as expected)
a sum of the system outputs due separately to either input. The
main problem solved in the section is to express the above terms

and in terms of the covariance of the TPI motion
and covariance matrices of instantaneous fluid speeds ,

which are assumed to be known.
For hydrophones nominally at from the tow-

point, where for integers ,

define cov for .
Notice that is the th element of the desired ma-
trix . Under assumption (54), may be expressed
as , where the first term is due to TPI
motion, and the second term is due to oceanic currents. The
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form of remains to be derived from the spatio-tem-
poral statistics of as well as from the spatio-tem-
poral statistics of . Each term is to be studied separately
below, with detailed attention given to the particular illustra-
tive case of first-order autoregressive auto-covariances for the
TPI motion and of oceanic current velocities. The resulting co-
variances turn out to be largely independent of the
space-time discretization, assuming the discretization to be suf-
ficiently fine.

D. New Statistical Modeling of Tow-Point Induced
Towed-Array Shape-Deformation

The towing-vessel’s motion has been modeled in [21] as tem-
porally uncorrelated, which may be physically unrealistic for
high time-sampling rates. Instead, the analysis here allows arbi-
trary temporal correlation (but requires statistical stationarity)
in the towing-vessel’s motion. The following expresses in
terms of the spatio-temporal statistics of , first for the gen-
eral case of any statistically stationary (but otherwise arbitrary)
spatio-temporal covariance and then for the special case of a
first-order auto-regressive temporal covariance. All subsequent
expressions will turn out to be independent of the discretization
grid used earlier.

Assume that is statistically stationary, zero-
mean, and with a Toeplitz covariance matrix containing el-
ements for .
Hence

(55)

and has the spatial covariance matrix ,
where diag . Thus

(56)

The above equation constitutes this subsection’s main contribu-
tion, relating the positional uncertainty’s covariance function to
the TPI motion’s spatio-temporal covariance function.

For the special case where the TPI motion may be represented
as an AR(1) temporally random process,7

(57)

where and represent constants that may be empirically
measured: denotes the variance of the TPI motion, and
characterizes the time correlation of the TPI motion. Given ,
the time delay [in which the correlation between and

decays to 1/10] equals . Combining (52),
(56), and (57)

(58)

and may be substituted into (54) to give the towed-array’s
space-time shape-deformation covariance. The expression on

7For covariance functions of the general AR(i) form or the general
ARMA(i; j) form, see [37].

the right-hand side of (58) is the covariance element for an
infinitely fine discretization grid.

E. Statistical Modeling of Ocean-Induced Array Shape
Deformation

The following will express in terms of the spatio-tem-
poral statistics of , first for the general case stipulating
only statistical stationarity and then for the special case where
the auto-correlation of is AR(1) in both space and time.

Define , for .
With the spatio-temporal covariance function of the
space-time random field characterizing fluid flow, (49)
implies for

. Define

(59)

The last equality holds because for , given
defined in (50). As is Toeplitz, some straightforward

manipulation gives

(60)

Referring to (50), (53), and (59)

(61)

The above equation represents this subsection’s key contribu-
tion, relating the positional uncertainty’s covariance function to
the oceanic flow’s space-time covariance function.

Consider the illustrative case of being AR(1) in both
space and time

(62)

where , , and are physical constants that may be em-
pirically measured. is the total variance of oceanic flows,
whereas and determine the correlation length of the
random field in reference to, respectively, time and
space; cf. (57).
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Referring to Appendix B for details, for ,
, , and ,

(63)

and may be substituted into (54) to give the towed-array’s
space-time shape-deformation covariance.

F. Summary of Notations of Constants

For easy reference, the following summarizes the notations
used in the above two subsections to describe the AR(1,1)
oceanic-current model and the AR(1) TPI-motion model.

variance of the TPI motion;
constant characterizing the temporal correlation of
the TPI motion (57);
variance of the oceanic flows;
constant characterizing the temporal correlation of
the oceanic flows (62);
constant characterizing the per-unit-length correla-
tion of the TPI motion (62);
constant in the exponential dumping model (52).

V. NUMERICAL EXAMPLES

A. Example 1: Variance of Positional Deviation Along the
Towed-Array

Fig. 3 plots and along the array’s length
when the towing-vessel’s motion is an AR(1) temporal sto-

chastic process and when the oceanic currents may be modeled
as a spatio-temporal AR(1) space-time stochastic process. The
simulation parameters are as follows: The towed-array has the
damping parameter (m ) (corresponding to a
damping factor per 6.25 m of tow-array length [24]),
the TPI-motion has the variance (m ) and
(s ), the ocean-induced motion has variance (m )
and (m ) and (s ).

As increases (i.e., further from the tow point), the TPI mo-
tion becomes less significant, but the oceanic flow becomes
more important. A faster tow speed does not affect ,
which is intuitively reasonable as the angle between the
array and surrounding fluid’s relative velocity also decreases
with increasing tow-speed, thereby diminishing the influence of
the oceanic currents.

The following examples illustrate the dependence of the CRB
of on various physical parameters in the far-field deep-sea
single-source scenario, where the towed-array has uniform half-
wavelength spaced hydrophones moving along the -axis.

Fig. 3. Standard deviation of positional deviation along the towed-array.
Dashed line: Influence from TPI motion. Solid line: Influence from fluid-flows
for tow-speeds shown. Referring to (52), (57), and (62), C = 0:008 � = 1

(m ), C = 1 (m ), � = 0:01 (m ), C = 1 (s ), and C = 1

(m ). The tow speed is U = 1, 3 and 5 (m/s), respectively.
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Fig. 4. Square root of CRB (in degrees) versus the number of observation
snapshots N and versus the SNR 
 =� .

B. Example 2: CRB versus the SNR and Number of
Snapshots

Fig. 4 plots the square root of the CRB (in degrees) versus the
SNR and the number of snapshots . The array has

hydrophones, equispaced at 6.25 m (corresponding to
a frequency of 120 Hz [24]) and towed with speed 3 m/s.
The hydrophones’ phase uncertainties are uncorrelated with a
3 standard deviation, implying (rad ). All
other simulation parameters remain the same as in Example 1.
Fig. 4 shows that for SNR 0 dB, the CRB approximates the
large- limit-CRB, even at . Moreover, the limit-CRB
does not depend on the SNR.
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Fig. 5. Square root of the limit-CRB (with N ! 1) versus the number of
hydrophones L and versus the tow-speed U .

C. Example 3: CRB Versus Number of Hydrophones and
Tow-Speed

Fig. 5 plots the large- limit-CRB versus the towed-array’s
number of constituent hydrophones and the tow-speed
(m/s ). All other simulation parameters remain identical
as in Example 2. As expected, the CRB in Fig. 5 decreases
(i.e., the potentially achievable accuracy improves) with more
hydrophones and a faster tow-speed.

With at least 30 hydrophones in the towed-array and at
low tow-speed, adding more hydrophones to the towed-array
(while maintaining the towed-array’s half-wavelength inter-hy-
drophone spacing) will offer more improvement in the
direction-finding’s CRB when the tow-speed is faster than
when the tow-speed is slower.

D. Example 4: CRB versus the TPI Parameters

Fig. 6 plots the large- limit-CRB versus the TPI-motion pa-
rameter (s ) and the damping parameter (m ) in the
absence of oceanic currents and hydrophone gain/phase uncer-
tainties. The TPI motion is statistically independent but identi-
cally distributed along the - and -axes. The limit-CRB, which
is plotted in Fig. 6, is proportional to the TPI transversal mo-
tion’s variance but is independent of the SNR. The CRB also
depends significantly on but only slightly on . Recall that

(m ) means low-frequency TPI-motions (say, due to
the towing vessel’s slow maneuvers) and a moderate corre-
sponds to TPI-motions similar to white noise. For fixed , the
CRB has a broad plateau with respect to .

E. Example 5: CRB Versus the Oceanic-Current Parameters

Fig. 7 plots the large- limit-CRB in the absence of TPI mo-
tion and hydrophone gain/phase uncertainties versus the oceanic
current parameters and for oceanic current that is sta-
tistically independent and identically distributed in the vertical
and horizontal directions. All other simulation parameters re-
main the same, as in the previous example. The CRB, which
is plotted in Fig. 7, decreases with increasing and with in-
creasing , as expected. For (m ) and
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Fig. 6. Limit-CRB (with N ! 1) per unit TPI-motion’s variance (in the
absence of oceanic currents) versus the TPI-motion parameter C and versus
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(assuming no TPI motion) plotted versus oceanic motion’s AR(1) space-time
parameters C and C .

(s ), the oceanic current’s velocities are more correlated over
space and over time, implying that the instantaneous velocities

and are more likely to have the
same sign, and array deformation would consequentially have a
larger variance.

VI. CONCLUSION

This work represents an initial step to bridge a serious
literature gap in deformed towed-array direction-finding
performance analysis by incorporating into the statistical
measurement model several essential fluid-mechanics consid-
erations while deriving mathematically rigorous quantitative
expressions and qualitative insights into how DOA estimation
may depend on physically measurable sources of array de-
formation. Among various derived properties of the far-field
deep-water single-source CRB, especially noteworthy is its
independence from the hydrophones’ gain uncertainties.
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(70)

APPENDIX A

Discretization of the Paidoussis equation is achieved [21],
[36] by substituting and in the Euler ap-
proximation

(64)

(65)

(66)

where denotes the ( )th element of in (49). After
some manipulations

(67)

The last equation may be written in matrix form as (49), where

(68)

where is defined in (51), and diag is
a diagonal matrix with

(69)

In [21], [24], and [36] replacing (68) by with a scalar
correcting factor is suggested.

APPENDIX B

Let and , . Then, we have (70),
shown at the top of the page. Further simplification is obtained
by the Taylor series expansion, which is valid for small

and for an arbitrary , it holds that
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Performance Analysis of the FastICA Algorithm
and Cramér–Rao Bounds for Linear

Independent Component Analysis
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Abstract—The FastICA or fixed-point algorithm is one of the
most successful algorithms for linear independent component anal-
ysis (ICA) in terms of accuracy and computational complexity. Two
versions of the algorithm are available in literature and software:
a one-unit (deflation) algorithm and a symmetric algorithm. The
main result of this paper are analytic closed-form expressions that
characterize the separating ability of both versions of the algorithm
in a local sense, assuming a “good” initialization of the algorithms
and long data records. Based on the analysis, it is possible to com-
bine the advantages of the symmetric and one-unit version algo-
rithms and predict their performance. To validate the analysis, a
simple check of saddle points of the cost function is proposed that
allows to find a global minimum of the cost function in almost 100%
simulation runs. Second, the Cramér–Rao lower bound for linear
ICA is derived as an algorithm independent limit of the achievable
separation quality. The FastICA algorithm is shown to approach
this limit in certain scenarios. Extensive computer simulations sup-
porting the theoretical findings are included.

Index Terms—Blind source separation, independent component
analysis (ICA), Cramér–Rao lower bound.

I. INTRODUCTION

B LIND SOURCE separation (BSS), which consists of
recovering original signals from their mixtures when the

mixing process is unknown, has been a widely studied problem
in signal processing for the last two decades (for a review,
see [1]). Independent component analysis (ICA), a statistical
method for signal separation [2], [3], is also a well-known issue
in the community. Its aim is to transform the mixed random
signals into source signals or components that are as mutually
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independent as possible. There are a number of methods in-
tended to solve related problems such as blind deconvolution
and blind equalization [4]–[6].

One of the most widely used ICA algorithms for the linear
mixing model is FastICA, a fixed-point algorithm first proposed
by Hyvärinen and Oja [7], [8]. It is based on the optimization
of a nonlinear contrast function measuring the non-Gaussianity
of the sources. A widely used contrast function both in FastICA
and in many other ICA algorithms is the kurtosis [9]–[11]. This
approach can be considered as an extension of the algorithm by
Shalvi and Weinstein [6].

There are two varieties of the FastICA algorithm: the defla-
tion, or one-unit algorithm, and the symmetric algorithm. The
deflation approach, which is common for many other ICA al-
gorithms [9], estimates the components successively under or-
thogonality conditions. The symmetric algorithm estimates the
components in parallel. This consists of parallel computation of
the one-unit updates for each component, followed by subse-
quent symmetric orthogonalization of the estimated demixing
matrix after each iteration. A version of FastICA for complex
valued signals was proposed in [12].

An essential question is the convergence of the FastICA al-
gorithm. This can be approached from two directions. First, as-
suming an ideal infinitely large sample, theoretical expectations
for the contrast functions such as the kurtosis can be used in the
analysis. Then, the contrast function and the algorithm itself be-
come deterministic, and questions such as asymptotic stability
of the extrema and the convergence speed can be discussed. For
the kurtosis cost function and the one-unit algorithm, this anal-
ysis was done in [7], showing cubic convergence. For a gen-
eral cost function, the convergence speed is at least quadratic,
as shown in [8] (see also [3]). The monotonic convergence and
the speed for a general cost function for the related gradient al-
gorithm was considered in [13]. For the kurtosis cost function
and the symmetric FastICA algorithm, the cubic convergence
was proven in [14] (see also [15]). Different properties of the
one-unit version have been illustrated by computer simulations
in [16] where the accuracy is also shown to be very good in most
cases.

The second question of convergence considers the behavior
of the algorithm for a finite sample, which is the practical case.
Then, the theoretical expectations in the contrast functions are
replaced by sample averages. This results in errors in the esti-
mator for the demixing matrix. A classical measure of the error
is the asymptotic variance of the matrix elements. The goal of
designing an ICA algorithm is then to make this error as small

1053-587X/$20.00 © 2006 IEEE
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as possible. For the FastICA algorithm, such an asymptotic per-
formance analysis for a general cost function was proposed in
[17].

The Cramér–Rao lower bound (CRB) provides an algorithm
independent bound for parameter estimation. In the context of
ICA, a Cramér–Rao-like bound for intersignal interference is
derived as asymptotic variance of a maximum-likelihood esti-
mate in [24], [26]–[29], and [32]. A similar result is known for
a related problem of blind deconvolution [30].

The purpose of the present paper is to look at the performance
of the FastICA algorithm, both the one-unit and symmetric ver-
sions, in this latter sense of asymptotic error, and compare it
with the exact CRB computed from its definition. The paper is
organized as follows. In Section II, the linear ICA model and
the FastICA algorithm are described. In addition, a novel check
of saddle points of the FastICA cost function is proposed that
allows to find the global minimum of the cost function in al-
most 100% simulation runs. Finally, the following criteria to
characterize the performance of the algorithm are introduced:
a gain matrix (variance of its elements) and a signal-to-inter-
ference ratio (SIR). In Section III, analytic expressions for the
variance of the off-diagonal gain matrix elements are derived
and discussed. These expressions are asymptotically valid for
large data sets when a “good” initialization of the algorithm is
assumed. Most of the details of the analysis are deferred to Ap-
pendixes. As an example of utilization of the analysis, a novel
variant of FastICA is proposed, which combines the one-unit
algorithm and the symmetric algorithm adaptively, depending
on empirical distribution of the estimated signal components, to
improve the performance.

In Section IV, the CRB on the variance of the off-diagonal
gain matrix elements is computed via inverse of a Fisher infor-
mation matrix. Section V compares the CRB with the asymp-
totic performance of FastICA and explains nonexistence of the
CRB for signals with bounded magnitude (e.g., uniform distri-
bution) and for some long-tailed distributions.

Section VI presents a number of computer simulations using
artificial data that validate and support the theoretical analysis.
The simulations also compare the algorithmic performance with
the CRB derived in Section IV. Finally, Section VII summarizes
the results and presents the conclusions.

II. DATA MODEL AND THE METHOD

Let represent a data matrix, composed of rows,
where each row contains independent re-
alizations of a random variable . Next assume that has a
distribution function . In a typical case for
ICA, the rows are called the source signals, and the random
variables are mutually independent.

The standard linear ICA model of a given data matrix
is

(1)

where is an unknown, nonsingular mixing matrix. Thus,
each row of is a linear mixture of the unknown indepen-
dent signals . The goal of independent component analysis

is to estimate the matrix or, equivalently, the demixing ma-
trix or, equivalently, the original source signals .
The following are well known:

1) the separation is unique only up to an unknown scaling
and ordering of the components ;

2) the separation is possible only if at most one of the orig-
inal source variables has a Gaussian distribution.

Since the scale of the source signals cannot be retrieved, one can
assume, without any loss in generality, that the sample variance
of the estimated source signals is equal to one. Thus, instead of
the original source signals , a normalized source signal matrix
denoted can be estimated, where

(2)

(3)

(4)

(5)

where stands for vector of 1’s.

A. Preprocessing

The first step of many variants of the ICA algorithms consists
of removing the sample mean and a whitening (decorrelation
and scaling), i.e., the transformation

(6)

where

(7)

is the sample covariance matrix, and is the sample mean,
. The output contains decorrelated and unit

variance data in the sense that (identity matrix).
Note that can be rewritten using (1) and (2) as

(8)

The ICA problem can be formulated as the one to find a
demixing matrix that separates the original signals from
the mixture , i.e., .

B. FastICA Algorithm for One Unit

The fixed-point algorithm for one-unit estimates one row
of the demixing matrix as a vector that is a sta-
tionary point (minimum or maximum) of the expression

subject to , where
is a suitable nonlinear and nonquadratic function [3]. In

the above expression, is applied elementwise.
Finding proceeds iteratively. Starting with a random ini-

tial unit norm vector , iterate

(9)

(10)

until convergence is achieved. In (9) and also elsewhere in the
paper, in accord with the standard notation [3], and
denote the first and the second derivative of the function .
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The application of and to the vector is elemen-
twise. Classical widely used functions include “pow3,”
i.e., (then the algorithm performs kurtosis mini-
mization), “tanh,” i.e., , and “Gauss,”

.
It is not known in advance which column of is being

estimated: It largely depends on the initialization. Note that the
recursion for some components might not converge. In the defla-
tion method [9], which is not studied in this paper, this problem
is solved by separating the components from the mixture one
by one using orthogonal projections. Here, we shall assume
that each signal component can be separated from the original
signal mixture using suitable initializations. Assume that the
separating vectors computed for all components are appro-
priately sorted [20] and summarized as rows in a matrix denoted

. The rows in may not be mutually orthog-
onal, in general.

C. Symmetric Fastica Algorithm

The symmetric FastICA proceeds similarly, the estimation of
all independent components (or equivalently, of all rows of )
proceeds in parallel, and each step is completed by a symmetric
orthonormalization. Starting with a random unitary matrix ,
iterate

(11)

(12)

until convergence is achieved. The stopping criterion proposed
in [14] is

(13)

for a suitable constant .
The result of the symmetric FastICA (unlike in the one-unit

algorithm without deflation) is a unitary matrix denoted
. As a consequence, sample correlations between

the separated signals are exactly equal to zero.

D. Check of Saddle Points

In general, the global convergence of the symmetric FastICA
is known to be quite good. Nevertheless, if it is run 10 000 times
from random initial demixing matrices, on the average in 1–100
cases, the algorithm gets stuck at solutions that can be recog-
nized by exceptionally low achieved SIR. The rate of these false
solutions depends on the dimension of the model, on the stop-
ping rule, and on the length of the data (see the example at the
end of this subsection).

A detailed investigation of the false solutions showed that
they contain one or more pairs of estimated components, say

, such that they are close to and
, respectively, where is the desired solution

(see Fig. 1). Due to symmetry, the saddle points of the criterion
function lie approximately halfway between two correct solu-
tions that differ in the order of two of their components. Thus,
an appropriate estimate of would be , where

and

Fig. 1. Contrast function EfG(cos�(cos' �x +sin' �x )+ sin� �x )g
(a) as a function of ' for � = 0, and (b) as a function of � for ' = 0; �=4,
and �=2, respectively; x ;x ;x were generated as i.i.d. uniformly distributed
in [�p3;

p
3] with the length N = 10000, and G(x) = log cosh(x). The

point ['; �] = [�=4;0] is a saddle point of the contrast function—it is its local
minimum with regard to ' and a local maximum with regard to �.

A selection between given candidates for a
better estimate of can be done by maximizing the cri-
terion used in the very beginning of derivation of FastICA

where and is a standard normal random vari-
able. In the case of the nonlinearity “tanh,”
and .

Thus, we suggest to complete the plain symmetric FastICA by

the check of all pairs of the estimated independent com-

ponents for a possible improvement via the saddle points. If the
test for saddle point is positive, it is suggested to perform one or
two additional iterations of the original algorithm, starting from
the improved estimate.
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TABLE I
NUMBER OF FAILURES OF SYMMETRIC FASTICA (tanh) AMONG 10 000 TRIALS

The failure rates of the plain symmetric FastICA with three
different stopping rules and of the improved FastICA with the
check of the saddle points are compared in the following ex-
ample. The first stopping rule was (13) with , the
second stopping rule was the same with , and the
third stopping rule required the former condition to be fulfilled
in three consecutive steps. The improved algorithm used the first
stopping rule and the test of the saddle points.

These four variants of the algorithm were applied to sepa-
rate 2, 3, 4, and 5 independent signals with uniform dis-
tribution and varying length in 10 000 independent trials with a
randomly selected initial demixing matrix. The number of al-
gorithmic failures that are detected by the condition that SIR of
some of the separated components is smaller than 3 dB is dis-
played in Table I. The table shows zero rate of the improved al-
gorithm except for the case of the data with the shortest length,

200. In the latest case, the rate of failures has significantly
dropped compared to the former three variants.

E. Measure of the Separation Quality

The separation ability of ICA algorithms can be character-
ized by the relative presence of the th source signal in the es-
timated th source signal. It is possible, if the source signals are
known. Due to the permutation and sign/phase uncertainty, the
estimated sources need to be appropriately sorted to fit the orig-
inal ones. In this paper, the method proposed in [20] is used.
Formally, the estimated source signals can be written using (8)
as

(14)

where and stands either for
or for . Note that has the meaning of the

estimated demixing matrix provided that . It will be
called the gain matrix for brevity.

The relative presence of the th source signal in the estimated
th source signal is represented by the th element of ,

denoted . Then, the total SIR of the th source signal is
defined as follows:

SIR (15)

It is important to note that the estimator is invariant with
respect to orthogonal transformations of the decorrelated data

, or equivariant [10]. It is because the recursions (9) and (10)
or (11) and (12) that represent the algorithm are equivalent to the
same relations with , and replaced by ,
and , respectively, where is an arbitrary unitary (i.e.,
obeying ) matrix. Then, the product

remains independent of . From these facts, it follows that the
gain matrix and consequently the SIR are independent of the
mixing matrix .1

III. ANALYSIS

Due to the above-mentioned equivariant property of FastICA
it can be assumed, without any loss in generality, that the recur-
sions (9) and (10) or (11) and (12) begin with the decorrelated
data of the form

(16)

where

(17)

The gain matrix of interest is now

(18)

Note that the gain matrix (and consequently the SIR as well)
is a function of the normalized source signals and of the non-
linear function used in the algorithm only.

The main result of this section can be summarized as follows.
Proposition 1: Assume that 1) all original independent com-

ponents have zero mean and unit variance and are temporarily
white, 2) the function in algorithm FastICA is twice continu-
ously differentiable, 3) the following expectations exist:

(19)

(20)

(21)

1To be exact, a change of the mixing matrix (or a change in the algorithm
initialization) may cause a change of the order or sign of the components at
the algorithm output. Here, however, we assume that the order and signs of the
components are post-processed to fit the original signals [20].
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TABLE II
SIR (IN DECIBELS] OF FastICA IN ITS MAIN SIX VARIANTS FOR TWO COMPONENTS WITH THE SAME DISTRIBUTION, AND THE

CRAMÉR–RAO BOUND (DERIVED IN SECTION IV) FOR N = 1000. THE BEST SIR IS MARKED BY BOLD CHARACTERS

for , and 4) the FastICA algorithm (in both variants)
is started from the correct demixing matrix and stops after a
single iteration.

Then, the normalized gain matrix elements and
for the one-unit FastICA and for symmetric Fas-

tICA, respectively, have asymptotically Gaussian distribution
and , where

(22)

(23)

for , provided that the denominators are
nonzero.

Proof: See Appendix A. An expression similar to (22) can
be found in [10] and [17], but (23) is novel.

The assumption 4 may look peculiar at the first glance, but
it is not so restrictive as it seems to be. It reflects the fact that
the presented analysis is “local” and assumes a “good” initial-
ization of the algorithm. The algorithm itself may have good
global convergence properties (see Section VI), but it is not a
subject of this proposition. Once the algorithm is started from
an initial that lies in a right domain of attraction, the resultant
stationary point of the recursion, denoted , is the same and is
approximately equal to obtained after one step from the
ideal solution, due to the fact that the convergence is quadratic.2

Our numerical simulations presented in Section VII, and also
other simulations that were skipped for lack of space, confirm
the validity of the asymptotic variances (22) and (23) for the al-
gorithm variant introduced in Section VI working with arbitrary
(random) initialization. Namely, it is shown that

and . The expressions
in (22) and (23) are functions of the probability distribution of

and of the nonlinear function via the expectations in
(19)–(21). Given the distribution and the nonlinearity, these ex-
pressions can be evaluated.

2The quadratic convergence means that if the initial difference between the
initialW and Ŵ is�W, the distance ofW (that isW after one iteration)
is O(k�Wk ).

Table II shows the theoretical SIR of the main six variants of
FastICA for separation of two components with the same distri-
bution, computed for a few distributions considered frequently
in the literature, for sample size 1000. Here, the distri-
bution “sinus” means the distribution of sin , where is
uniformly distributed in , “bpsk” is the discrete distribu-
tion with values , both with the probability 0.5, and
means the generalized Gaussian distribution with parameter ,
described in Appendix F. Note that the latter distribution is stan-
dard Gaussian for , the Laplace distribution for ,
sub-Gaussian for , approaching the uniform distribution
for , and super-Gaussian (spiky) for .

Note that for separation of components, the SIR would
be dB lower than in the table, and if is increased/de-
creased ten times, the resultant theoretical SIR is increased/de-
creased by 10 dB compared with the table.

A. Example of Utilization

In this subsection, the previous analysis is used to de-
rive a novel variant of the FastICA algorithm, which com-
bines advantages of both previously discussed variants.
For easy reference, it will be called “Smart FastICA.”
This algorithm begins with applying symmetric FastICA
with nonlinearity “tanh.” For each estimated component
signal , parameters , and are computed as
sample estimates of the expectations in (19)–(21), namely

,
and then they are plugged in (22) and (23) and (15), namely

SIR

SIR

If the obtained SIR for the one-unit algorithm is better than
for the former estimate, the algorithm is performed, taking ad-
vantage of a more suitable nonlinearity for each of particular
cases: In the super-Gaussian case, defined by the condition

, the option “Gauss” is selected, and in the sub-Gaussian case
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with , “pow3” is applied (see the simulation section for
a reason).

Then, , and SIR are computed again. If the new
SIR is better than the previous one and if, at the same time, the
scalar product between the former separating vector and the new
one is higher in absolute value than a constant (we have used
0.75), then the one-unit refinement is accepted in favor of the
former vector. The condition on the scalar product is intended
to eliminate the cases where the one-unit algorithm converged
to a wrong component. A further optimization of the algorithm
exceeds the scope of the paper [33].

B. Optimum Nonlinearity

It is interesting to know, which function would be op-
timal for given probability density function (pdf) of . If all
source signals have the same distribution, the answer is well
known. It is the so-called score function of the distribution, de-
fined as , where is the underlying
pdf. Introduce the notation

(24)

where is a random variable with the pdf . Note that if has
zero mean and variance one, it holds , where the equality
is attained if and only if the underlying distribution is standard
Gaussian (see Appendix E). Thus, represents a measure of
non-Gaussianity.

For the optimum nonlinearity , a straightfor-
ward computation gives and , and conse-
quently

(25)

(26)

IV. CRAMÉR–RAO LOWER BOUND FOR ICA

Consider a vector of parameters being estimated from a data
vector , having probability density , using some un-
biased estimator . The CRB is the lower bound for the variance
of . Assume that is smooth and the following Fisher in-
formation matrix exists:

(27)

Then, under some mild regularity condition,[18],3 it holds

CRB

Next, if is a differentiable function of , then the
Fisher information matrix for exists as well and is equal to

(28)

31) Support of f is independent of ���; 2) @f (x j ���)=@��� exists for all �
from an open set; and 3) E[@f (x j ���)=@���] = 0

where is the Jacobian of the mapping . If the mapping is
linear, or for some regular matrix , then

.
In the context of ICA, we first focus on deriving the CRB for

estimation of the demixing matrix , i.e., the param-
eter vector is .

The following assumptions will be considered throughout this
section:

(29)

(30)

(31)

where and denotes the score function of the cor-
responding pdf, i.e., is assumed
to have zero mean for all , and for all and .

A. Fisher Information Matrix

From the independence of the original signals, it follows that
their joint pdf is . Then, using the
transformation

(32)

Incorporating this density into (27), the th element of the
Fisher information matrix , where

, and denotes the th element of the
matrix , is

(33)

A straightforward computation (see Appendix C) gives

(34)

with defined in (30) and (31), is the Kronecker’s delta,
and denotes the th element of the mixing matrix . It can
be shown, using (28), that

(35)

where stands for the Fisher information matrix derived for
a case when (identity matrix); denotes the Kronecker
product. Substituting into (34), it easily follows that

(36)

Some properties of the matrix will be shown in Appendix D.

B. Accuracy of the Estimation of

Let denote an estimator of the demixing matrix . Es-
timated signals are then . It is inter-
esting to compute the CRB for the elements of the gain ma-
trix , which is closely related to the gain matrix
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defined in (14). A comparison of the definition relations gives
, where contains, on its diagonal, sample vari-

ances of the original independent signal components. Asymp-
totically, converges to unity matrix, and hence any estimate
of is at the same time an estimate of , and vice versa.
In addition, it follows from the analysis in Appendix A that the
asymptotic distribution of nondiagonal elements of and those
of is the same.

To compute the CRB for , note that the new parameter
vector is just a linear function of the parameter

, i.e., . Then,
using (28), the Fisher information matrix of is

(37)

Note that is independent of the mixing matrix . The CRB
for the th element of is

CRB

where and . In Appendix D, it is proved
that for such

(38)

which gives us the desired lower bound

CRB (39)

The diagonal elements of are not as important, they just
reflect the accuracy of estimating the power of the components,
or equivalently, the norm of rows of the demixing matrix.

V. DISCUSSION

A. Comparison of CRB With Performance of
FastICA With Optimum

The Cramér–Rao lower bound in (39) is compared with the
asymptotic variance of FastICA in (25) and (26) in Fig. 2. We
can see that for close to 1, the CRB is close to the variance
of the symmetric FastICA with the optimum nonlinearity. In
this case, however, the estimation may fail, because the variance
of the estimator itself goes to infinity, and convergence of the
algorithm may be slow.

In the opposite case, for , the CRB asymptotically
coincides with the variance of the one-unit FastICA with the
optimum nonlinearity, because

-

CRB

-

CRB
for

We conclude that the FastICA algorithm with the optimum non-
linearity is asymptotically efficient in two cases: 1) one-unit ver-
sion for and 2) symmetric version for provided
that all components have the same distribution law.

B. Separation of Sources With the
Generalized Gaussian Distribution

Properties of the generalized Gaussian distribution are listed
for easy reference in Appendix F. Note that the score func-

Fig. 2. Asymptotic performance of one-unit and symmetric FastICA and the
CRB versus parameter �.

tion of this distribution is proportional to so that
is the theoretically optimum nonlinearity

for the distribution. However, only for is this function
continuous and hence suitable nonlinearity for FastICA. For dis-
continuous ’s, the algorithm appears not to converge.

C. Distributions With Finite Support

The CRB does not exist (the bound is infinite) for the
bounded magnitude distributions such as “uniform,” “sinus,”
and “bpsk” in Table II. It happens because these distributions do
not have infinite support, as required for existence of the CRB.
Since the uniform distribution is a limit of the GGD for
going to infinity, it is natural to study FastICA with nonlinearity

with large . It can be easily shown that
the one-unit FastICA with this nonlinearity has asymptotic
variance that goes to zero for .
Similar results can be obtained for the distribution “sinus.” In
other words, the asymptotic variance of FastICA cannot be
lower bounded by any bound of the form . Implications of
the above observation for an adaptive choice of the nonlinearity
exceed the scope of this paper.

D. Distributions With Long Tails

The CRB does not exists for the GGD distribution
with parameter (cf. lines 7 and 8 in Table II).
These distributions are sometimes called “long tailed”.
Instead of the score function, let us consider the nonlin-
earity . This choice has the
advantage, that the asymptotic variance of FastICA with
this nolinearity can be computed analytically. The result is

for large and , with
defined in (93). Again, goes to zero for

and all . This explains nonexistence of the CRB
in this case. Design of an FastICA-based algorithm tailored for
long-tailed distributions exceeds the scope of this paper.
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Fig. 3. Performance of (a) one-unit FastICA and (b) symmetric FastICA in
separating signals with distribution GG(�) as a function of �.

VI. NUMERICAL RESULTS

Example 1: Four independent random signals with gener-
alized Gaussian distribution (see Appendix C) with parameter

and length 5000 were generated in 100 independent
trials. The signals were mixed with a matrix that was randomly
generated in each trial, and demixed again by eight variants of
the algorithm: the symmetric FastICA with nonlinearities tanh,
Gauss, pow3, and with the score function (dependent on ), as
well as the one-unit FastICA with the same nonlinearities, im-
plemented like smart FastICA. The resulting theoretical and em-
pirical SIR is plotted in Fig. 3(a) and (b). An erratic behavior of
the empirical results is experienced for small and nonlinearity
pow3. Here, the convergence of sample estimates of the expres-
sions in (19)–(21) to their expectations is slow. We can see that
among the -independent nonlinearities, the “pow3” performs
best in the case of that corresponds to the sub-Gaussian

Fig. 4. Relative efficiency of (a) one-unit FastICA and (b) symmetric FastICA.

case, and “gauss” is the best one for where the distri-
bution is super-Gaussian. FastICA with equal to the score
function does not work properly (does not converge at all) for

, because the score function is not continuous for these
’s.
Fig. 4 is similar, showing the relative efficiency of the eight

methods compared with the corresponding CRB.
Example 2: In the second experiment, we have generated

three different components with Gaussian, GG , and Laplace
distribution of the fixed length 5000 in 100 independent
trials for each . Signals were randomly mixed and separated
by the symmetric FastICA and Smart FastICA with nonlinearity
tanh. The resultant SIRs are shown in Fig. 5. Note that this ex-
ample includes the situation where the mixture includes two
Gaussian distributions for . The empirical and theoret-
ical SIR are shown to agree very well. The Smart FastICA out-
performs the symmetric version for such when the one-unit
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Fig. 5. Performance of symmetric FastICA and smart FastICA separating
three different components using “tanh” nonlinearity.

Fig. 6. Comparison of CRB with performance of four ICA techniques.

approach has better variance than the symmetric one, and gives
the same result otherwise.

Example 3: In the last experiment, we studied performance
of two computationally extensive algorithms that are claimed to
be more accurate than older algorithms: RADICAL [22] and
NPICA [23]. We tested implementations available on the In-
ternet and compared their performance with the CRB. The simu-
lations are obtained from 50 independent separations of a signal
of length 1000 with components, all having the
same distribution function, GGD (see Fig. 6). In the neigh-
borhood of the point , the symmetric FastICA appears to
outperform the other techniques. In general, it appears to give
stable results unlike the NPICA.

VII. CONCLUSION

In this paper, 1) a novel technique to improve stability of Fas-
tICA is proposed, 2) novel analytical expressions are derived

for the variance of gain matrix elements for one-unit and sym-
metric FastICA, with an arbitrary twice differentiable nonlinear
function and arbitrary probability distribution with finite vari-
ance of the independent components in the linear mixture, and
3) the Cramér–Rao bound for the above ICA problem is com-
puted. The CRB does not exist for sources with bounded magni-
tude and for sources with long-tailed distribution. It was shown
that asymptotic variance of estimates produced by FastICA with
properly selected nonlinearity can approach the CRB, if the
CRB exists, or approach zero, if the CRB does not exist. Good
general performance of this popular algorithm is confirmed and
possibilities of its further improvements are indicated.

Computer simulations confirm very well the validity of the
theoretical predictions.

APPENDIX A
PROOF OF PROPOSITION 1

A. Preliminaries

Invoking assumption (1) of the proposition, and the weak law
of large numbers it follows that the sample variance of de-
fined in (4) converges to 1 in probability for going to infinity,
symbolically , or , where is the
stochastic order symbol (see, e.g., Appendix C in [31]). Simi-
larly, thanks to the assumption (3)

(40)

(41)

In addition, due to the mutual independence of components, it
holds for

(42)

where denotes the elementwise product. It can be shown,
that the same limits are obtained if in (40)–(42) are re-
placed by the normalized components , where is the

th column of . Note from (2) that
, consequently

, and

(43)

Similarly, it can be shown that

(44)

(45)

Moreover, using the asymptotic expression for , to be derived
in the next subsection, it can be shown that the relations (40) and
(41) hold true as well, if is replaced with , that is defined
as the th column of

(46)

(47)
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B. Asymptotic Behavior of

As goes to infinity, the matrix defined in (17) approaches
identity matrix in the mean square sense. To see this, note that
the diagonal elements of are equal to one by definition, and
that the off-diagonal elements with have zero mean.
Due to assumed independence of and , it holds

(48)

where . Let . Since all elements
of have the same distribution, the diagonal elements of
have all the same value

(49)

for . The off-diagonal elements have all the same
value as well

(50)

for . Combining (48), (49), and (50) gives

(51)

(52)

It follows from (52) that

(53)

where denotes a standard stochastic order symbol, or a
matrix of stochastic order symbols of appropriate dimension.
Using Lemma 1 in Appendix B, it can be derived that

(54)

C. Approximation for

Obviously, and

(55)

A Taylor series expansion of function in a neighborhood
of gives

(56)

where denotes the elementwise product and

(57)

Using (17), the th column of is

(58)

D. Approximation for

Inserting in (11), the th element of reads

for
for

(59)

For , we get using (46) and (47)

(60)

For , we get using (56)

(61)

The reminder term in (61) has the stochastic order for the
following reason. It holds that , and the remainder
in the expansion of , that is , are -element vec-
tors. The stochastic order notation is valid uniformly over ele-
ments of these vectors. Hence, scalar product of these two vec-
tors is . Similarly,

, and .
In the following, let and stand for and ,

respectively, . Note that, due to (21) and due to
independence of for , it holds

(62)

It follows from (19) and (62) that

(63)

Similarly

(64)
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Applying (63) and (64) and (43)–(45) in (61) gives

(65)

E. Approximation for

Note that if for some , the th diagonal element
of the demixing matrices and may have the wrong
sign, i.e., it might be close to instead of 1. It corresponds to
reversed sign of the th estimated independent component. In
the one-unit version of the algorithm, the sign can be corrected
by replacing the normalization in (10) by an equivalent formula

(66)

Similarly, using Lemma 2 in Appendix B, the asymptotically
equivalent sign corrected expression for the estimated demixing
matrix is

(67)

For both estimator variants, and we can write

(68)

Since

(69)

the gain matrix off-diagonal elements read

(70)

For the one-unit variant, we get

(71)

Finally, we show that (71) can be rewritten in terms of in
an asymptotically equivalent formula

(72)

To see that, note that

(73)

Similarly, it can be shown that

(74)

Equation (74) concludes the proof of (72). Now, applying the
central limit theorem to (72) implies that the distribution of

is asymptotic normal with zero mean and variance
equal to the variance of the leading term in (72). Using (62)–(64)
gives

(75)

Similarly, for symmetric FastICA, it holds using (67) that

(76)

The variance of the leading term in (76) results, after some al-
gebra using (63)–(65), in

(77)

as desired.

APPENDIX B
LEMMAS

Lemma 1: Let and be positive definite matrices of the
same dimension and . Then, for (in
any matrix norm), it holds

(78)
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where

(79)

Here, “vec” denotes the operation that reshapes columns of a
matrix in one long column vector, and “unvec” is the corre-
sponding inverse operation.

In the case that is diagonal, is a
diagonal matrix with for , then has
elements

(80)

In the case that , (80) gives .
Proof: The identity

(81)

leads, after neglecting higher than first-order terms in and
, to the relation

(82)

or, equivalently

The desired solution (79) follows.
Lemma 2: Let

(83)

where is a diagonal matrix, and let
for . Then, for it holds

(84)

where has elements

(85)

Proof: Using Lemma 1 gives

(86)

where

(87)

and has as elements

(88)

Then

(89)

and hence the leading term has elements

APPENDIX C
COMPUTING FISHER INFORMATION MATRIX

Applying the fact that , we
get from (32)

Next

Returning to the above formula, we get

From (1), it follows that , and consequently
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Using this, we can directly compute the th entry of the Fisher
information matrix.

The second and the third term are equal to , because
. To simplify the last term,

we shall consider two cases:

1) , then

2) , then

Here, denotes a random variable with pdf , and denotes
its score function, i.e., . After a few
simplifications, (34) follows.

APPENDIX D
COMPUTING MATRIX INVERSION OF

Definition (36) can be rewritten as
, where th element of and are ,

and , respectively, for
and . Note that is a rank-one

matrix, , where . Applying the matrix
inversion lemma gives

To compute the inversion , note that is diagonal

(90)

and is a special permutation matrix such that
for any matrix . Moreover, obeys ,

and for any diagonal matrix it holds that

where . These facts can be used to
show that the inversion of can be written in the form

for suitable diagonal matrices and . The equality

is fulfilled for and . Hence

and

where and . Finally, it can be shown
that mm mm for .
(38) easily follows.

APPENDIX E
PROOF THAT

Assume that is a positive probability density function
of a random variable with zero mean and variance 1, such
that in (24) exists. Then, integration per partes and the
Cauchy–Schwartz inequality gives

(91)

The equality in (91) is attained if is proportional to ,
which necessarily means that that the distribution is Gaussian.

APPENDIX F
GENERALIZED GAUSSIAN DISTRIBUTION FAMILY

Consider the generalized Gaussian density function with pa-
rameter , zero mean and variance one, as [19]

(92)
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where is a positive parameter that controls the distribu-
tion’s exponential rate of decay, is the Gamma function,
and

(93)

This generalized Gaussian family encompasses the ordinary
standard normal distribution for , the Laplacean dis-
tribution for , and the uniform distribution in the limit

.
The th absolute moment for the distribution is

(94)

The score function of the distribution is

(95)

Then, simple computations give

for

otherwise
(96)
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cardinal number of a set X [9, p. 552]). This can be shown by using
the fact that bk(tn) and bk (tn) are independent of all other elements
of B due to Assumption 1. Hence, for every possible combination
of bk(tn) and bk (tn) it is possible to group terms corresponding to
bk;l(tn) = bk(tn) and bk ;l(tn) = bk (tn) on the left-hand side of
(39) into a sub sum which is equal to the marginal distribution of that
combination. Finally, note that since bk(tn); bk (tn) 2 f0; 1g and

Prfbk(tn) = 1; bk (tn) = 1g =
(1� pk)(1� pk ); if k 6= k0

(1� pk); if k = k0

the proof follows.
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Corrections to “Performance Analysis of the FastICA
Algorithm and Cramér–Rao Bounds for Linear

Independent Component Analysis”

Petr Tichavský, Zbyněk Koldovský, and Erkki Oja

Abstract—The derivation of the Cramér–Rao bound (CRB) in [“Perfor-
mance Analysis of the FastICA Algorithm and Cramér–Rao Bounds for
Linear Independent Component Analysis,” IEEE Trans. Signal Process.,
vol. 54, no. 4, Apr. 2006, pp. 1189–1203] contains errors, which influence
the matrix form of the CRB but not the CRB on variance of relevant off-di-
agonal elements of the demixing matrix. In this correspondence, we correct
these errors.

I. THE FISHER INFORMATION MATRIX FOR ICA

The referenced paper considers a standard linear independent com-
ponent analysis (ICA) model of a given d�N data matrix

X = AS (1)

where A is an unknown, nonsingular d � d mixing matrix. The joint
probability density function (pdf) of the independent components is
assumed to be fs(S) = d

i=1

N

j=1
fi(sij), where sij is the (i; j)th

element of S; i = 1; . . . ; d; j = 1; . . . ; N , and fi is the pdf of sij .
The data matrixX is obtained as a linear transformation of S;X =

W
�1
S, or equivalently, vec[X] = (IN 
W�1)vec[S], whereW =

A
�1; IN denotes the N � N identity matrix and 
 is the Kronecker

product. Therefore, the joint pdf of the data has the form

f
x j���(X j ���) = j detWjNfs(WX) (2)

where ��� is the unknown to-be-estimated vector parameter,
��� = vec[W]. The error in [1] begins with the missing exponent
N in the pdf expression above; cf. [1, eq. (32)].

A straightforward computation similar to that in Appendix C in [1]
follows that (34) in [1] should be replaced with

Fmn = N ajuavi + �iuajiavi(�i � 2) + �iu�i

d

`=1; 6̀=u

aj`av` :

(3)

Recall for completeness that Fmn is the mnth element of the d2 � d2

Fisher information matrix F� , where m = (i � 1)d + j; n = (u �
1)d+v; aij denotes the ijth element of the matrixA; �i

def

=
E[ 2

i (sij)],
�i

def

=
[s2i 

2

i (sij)], and  i
def

=
=�f 0i=fi. A comparison of (3) with (34)

in [1] shows that the correct Fisher information matrix element does
not include any term proportional to (N � 1)2 but is proportional to
N .

The derivation of (3) via Appendix C in [1] can be simplified by
putting N = 1 and multiplying the resultant information matrix by N
afterwards. The information matrix must be proportional toN , because
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the observed data are composed of N independent observations of a
random vector with the same distribution.

The computation proceeds by proving the formula

F� = (AT 
 I)FI(A
 I) (4)

where FI stands for the Fisher information matrix derived for a case
when A = I (identity matrix). Note the error in the matrix transpo-
sitions in (35) in [1] and also in (37). The latter equation should read
FG = (WT 
 I)F�(W
 I) = FI. A similar typo exists in [2].

For the proof of (4), it was referred to (28) in [1], but it is not accurate.
In fact, (4) was only inspired by this formula.

Substituting aij = �ij into (3), it easily follows that the mnth ele-
ment of FI for m = (i� 1)d+ j and n = (u� 1)d+ v reads

(FI)mn = N(�ju�vi + �ji�vu�vi(�i � �i � 2) + �iu�vj�i): (5)

Again, there is no term proportional to (N � 1)2, unlike (36) in [1].
Thus,FI can be written asFI = N(P+�), whereP is a permutation
matrix and � is a diagonal matrix such that the mnth element of P
and� are �ju�vi, and �iu�vj [�i + �ij(�i� �i � 2)], respectively, for
m = (i � 1)d+ j and n = (u � 1)d+ v.

To prove (4) rigorously, note that the mnth elements of A 
 I and
A

T 
 I for m = (i � 1)d + j and n = (u � 1)d + v are equal to
(A
 I)mn = aiu�jv and (AT 
 I)mn = aui�jv , respectively. Then,
the mnth element of the product (AT 
 I)FI(A
 I) is

[(AT 
 I)FI(A
 I)]mn =
n ;n

(AT
 I)mn (FI)n n (A
 I)n n:

(6)

A straightforward computation gives that the matrix element in (6) is
identical to that in (3).

Appendix D in [1] should be changed accordingly. Application of
the matrix inversion lemma is not needed, and the rest of the Appendix
and the final result in (38) are correct. Note that an alternative elegant
method of inversion of a matrix similar to FI was used in [2].

Finally, note that one of assumptions of the Cramér–Rao inequality
is that the support of the pdf fxj�(Xj�) is independent of the estimated
parameter ���. In the ICA scenario, this assumption is equivalent to the
condition that fi(x) > 0 for all i and finite x. In particular, the CRB is
not defined for sources with a bounded (limited) support.
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Hilbert Pair of Orthogonal Wavelet Bases:
Revisiting the Condition

David B. H. Tay, Member, IEEE

Abstract—It is now well known that in order to have wavelet bases that
form a Hilbert Transform pair, the corresponding low-pass conjugate
quadrature filters (CQF) should ideally be related through a half sampled
delay, i.e., . In this correspondence we revisit this condition and ex-
amine some subtleties associated with this condition that were overlooked
in previous work. We will show that there is a more general condition
where the delay can be any “even+half” samples, i.e., . More
importantly we examine the implications in formulating design strategies
for Hilbert pairs and its implementation.

Index Terms—Complex wavelet, dual-tree, Hilbert pair, orthonormal
filter banks..

I. INTRODUCTION AND PRELIMINARIES

Overcomplete complex (valued) transforms that are based on the
Hilbert pairs are becoming an increasingly important signal processing
tool [1]. These complex transforms have the advantage of approximate
shift-invariance over the critically sampled real (valued) wavelet trans-
forms.

Orthogonal wavelets are usually associated or obtained from a
low-pass conjugate quadrature filter (CQF) H(z). A CQF satis-
fies H(z)H(z�1) + H(�z)H(�z�1) = 1. In the filter bank,
the constituent filters, denoted by H0(z) (low-pass analysis), H1(z)
(high-pass analysis), F0(z) (low-pass synthesis), and F1(z) (high-pass
synthesis), are usually obtained from a CQF filter H(z) as follows:

H0(z) = H(z) H1(z) = z
�1
H(�z�1)

F0(z) = H(z�1) F1(z) = z H(�z): (1)

With (1), it can be verified that the aliasing function A(z) �
H0(�z)F0(z) + H1(�z)F1(z) = 0 and the reconstruction function
T (z) � H0(z)F0(z) +H1(z)F1(z) = 1, perfect reconstruction with
zero delay.

In a Hilbert pair, the two wavelets corresponding to two CQFs are
related through the Hilbert transform:

	g(!) =
�j	h(!) for ! > 0

j	h(!) for ! < 0
(2)

where 	h(!) and 	g(!) are the Fourier transforms of  h(t) and
 g(t), respectively. By denoting the corresponding CQFs by Hh(z)
and Hg(z) respectively, it was first shown in [2] that (2) is achieved if

H
g(ej!) = e

�j!=2
H

h(ej!); j!j < � (3)

and is known as the half sample delay condition. Further analysis on the
condition were presented in [3] and [4] using alternative formulations
which are easier to manipulate analytically. The conclusion drawn in
[3] and [4] are similar to that in [2], namely the half sample delay con-
dition is required. The most general analysis appeared in [4] where no
assumption on the relationship between the two CQFs were made and
(3) is shown to be necessary and sufficient.
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Cramér-Rao-Induced Bounds for CANDECOMP/
PARAFAC Tensor Decomposition

Petr Tichavský, Senior Member, IEEE, Anh Huy Phan, and Zbyněk Koldovský, Member, IEEE

Abstract—This paper presents a Cramér-Rao lower bound
(CRLB) on the variance of unbiased estimates of factor matrices
in Canonical Polyadic (CP) or CANDECOMP/PARAFAC (CP)
decompositions of a tensor from noisy observations, (i.e., the
tensor plus a random Gaussian i.i.d. tensor). A novel expression is
derived for a bound on the mean square angular error of factors
along a selected dimension of a tensor of an arbitrary dimen-
sion. The expression needs less operations for computing the
bound, , than the best existing state-of-the art algorithm,

operations, where and are the tensor order and the
tensor rank. Insightful expressions are derived for tensors of rank
1 and rank 2 of arbitrary dimension and for tensors of arbitrary
dimension and rank, where two factor matrices have orthogonal
columns.
The results can be used as a gauge of performance of different

approximate CP decomposition algorithms, prediction of their ac-
curacy, and for checking stability of a given decomposition of a
tensor (condition whether the CRLB is finite or not). A novel ex-
pression is derived for a Hessianmatrix needed in popular damped
Gauss-Newtonmethod for solving the CP decomposition of tensors
with missing elements. Beside computing the CRLB for these ten-
sors the expression may serve for design of damped Gauss-Newton
algorithm for the decomposition.

Index Terms—Canonical polyadic decomposition, Cramér-Rao
lower bound, multilinear models, stability, uniqueness.

I. INTRODUCTION

O RDER-3 and higher-order data arrays need to be an-
alyzed in diverse research areas such as chemistry,

astronomy, and psychology [1]–[3]. The analyses can be done
through finding multi-linear dependencies among elements
within the arrays. The most popular model is Parallel factor
analysis (PARAFAC), also called Canonical decomposition
(CANDECOMP) or CP, which is an extension of a low rank
decomposition of matrices to higher-way arrays, usually called
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tensors. In signal processing, the tensor decompositions have
become popular for their usefulness in blind source separation
[4].
Note that a best-fitting CP decomposition may not exist for

some tensors. In that case, trying to find a best-fitting CP de-
composition results in diverging factors [5], [6]. This paper is
focussed on studying CP decompositions of a noisy observa-
tions of tensors, which admit an exact CP decomposition. The
decomposition of the noiseless tensor is taken as a ground truth
for computing errors.
An important issue is the essential uniqueness of CP decom-

position as it entails identifiability of the model (the factor ma-
trices) from the tensor. The adjective “essential” means that the
model is unique up to a scale and permutation ambiguity, which
is inherent to the problem. Initial works in the field can be traced
back in 70’s in works of Harshman [7], [8]. A popular suffi-
cient condition for the uniqueness was derived by Kruskal in
[9]. Recently, the problem has been addressed again, namely by
Stegeman, Ten Berge, De Lathauwer, Jiang, Sidiropoulos et al.;
see [10]–[24].
This paper is focussed on stability of the CP decomposition

rather than on the uniqueness. By stability we mean existence of
a finite Cramér-Rao bound in a stochastic set-up, where tensor
elements are corrupted by additive Gaussian-distributed noise.
Relation of this kind of stability to a deterministic stability and
to the uniqueness was studied in [25]. It is not true, in gen-
eral, that stability of a solution of a nonlinear problem implies
uniqueness of the solution. For example, there might always be a
permutation or sign ambiguity. It is yet an open theoretical ques-
tion if stability of the CP tensor decomposition problem implies
its essential uniqueness. Regardless of the missing link to iden-
tifiability, the stability is an interesting concept which is worth
to be studied, because different kind of noise is very common.
In general, in order to evaluate performance of a tensor de-

composition, the approximation error between the data tensor
and its approximate is sometimes used. Unfortunately, such
measure does not imply quality of the estimated components.
In practice, in some difficult scenarios such as decomposition
of tensor with linear dependency among components of factor
matrices, or large difference in magnitude between components
[26], [27], most CP algorithms explained the data tensor at
almost identical fit, but only few algorithms can accurately
retrieve the hidden components from the tensor [26], [28]. In
order to verify theoretically the quality of the estimated compo-
nents and evaluate robustness of an algorithm, an appropriate
measure is an essential prerequisite. The squared angular error
between the estimated component and its original one is such
a measure [29], [30]. Working with angular errors is practical,

1053-587X/$31.00 © 2013 IEEE
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because the scaling ambiguity does not play a role. Only the
permutation ambiguity has to be solved in practical examples,
because order of the factor can be quite arbitrary.
Cramér-Rao lower bound for CP decomposition was first

studied in [31], and later, a more compact asymptotic expres-
sion was derived in [32] for tensors of order 3 appearing in
wireless communications. A non-asymptotic (exact) CRLB-in-
duced bound (CRIB) on squared angular deviation of columns
of the factor matrices with respect to their nominal values has
been studied in [29]. Similar results for symmetric tensors
are derived in [33]. Nevertheless, the study is limited to the
case of three-way tensors. In the general case, CRIB can be,
indeed, calculated through the approximate Hessian which is
often huge, and is impractical to directly invert. Note that such
task normally costs where . Seeking a
cheaper method for CRIB is a challenge to made it applicable.
This paper presents new CRIB expressions for tensors of ar-

bitrary dimension and rank, and specialized expressions for rank
1 and rank 2 tensors. The results rely on compact expressions
for Hessian of the problem derived in [28]. Alternative expres-
sions for the Hessian exist in [39]. Note, however, that unlike
[28], this paper presents different expressions for inverse of the
Hessian, which have lower computational complexity. In par-
ticular, complexity of inversion of the Hessian is reduced from

operations to , where and are the tensor
order and the tensor rank, respectively.
On basis of new discovered properties of the CRIB, we es-

tablished connection between theoretical and practical results
in CP decomposition (CPD):
• Stability of CPD for rank-1 and rank-2 tensors of arbitrary
dimension.

• The work may serve as theoretical support for a novel CP
decomposition algorithm through tensor reshaping [34],
which was designed to decompose high-dimensional and
high-order tensors. In particular, it appears that higher-
order orthogonally constrained CPD [35]–[38] can be de-
composed efficiently through tensor unfolding.

• Stability when factor matrices occur linear dependence
problem and especially the rank-overlap problem [1],
[23], [36]. The problem is related to a variant of CPD
for linear dependent loadings which was investigated in
chemometric data and in flow injection analysis [1], [36].
A partial uniqueness condition of the related model is
discussed in [23].

• CP decomposition of tensors with missing entries, which
is quite frequent in practice, is addressed. An approximate
Hessian for this case is derived, which is the core for the
damped Gauss-Newton algorithm for the decomposition.

• A maximum tensor rank, given dimension of the tensor,
which admits a stable decomposition is discussed.

The paper is organized as follows. Section II presents the main
result, the Cramér-Rao induced bound on angular error of one
factor vector in full generality. In Section III, this result is
specialized for tensors of rank 1 and rank 2, and for the case
when two factor matrices have mutually orthogonal columns.
Section IV is devoted to a possible application of the bound:
investigation of loss of accuracy of the tensor decomposition

when the tensor is reshaped to a lower-dimensional form.
Section V deals with the bound for tensors with missing en-
tries, Section VI contains examples—CRIB computed for CP
decomposition of a fluorescence tensor, stability of the tensor
investigated by Brie et al., and a discussion of a maximum
stable rank given the tensor dimension. Section VII concludes
the paper.

II. PRESENTATION OF THE CRIB

A. Cramér-Rao Bound for CP Decomposition

Let be an way tensor of dimension .
The tensor is said to be of rank , if is the smallest number
of rank-one tensors which admit the decomposition of of the
form

(1)

where denotes the outer vector product, , ,
are vectors of the length called factors. The

tensor in (1) can be characterized by factor matrices
of the size for .

Sometimes (1) is referred to as a Kruskal form of a tensor [45].
In practice, CP decomposition of a given rank is used

as an approximation of a given tensor, which can be a noisy
observation of the tensor in (1). Owing to the symmetry
of (1), we can focus on estimating the first factor matrix ,
without any loss of generality, and we can assume that all other
factor matrices have columns of unit norm. Then the “energy”
of the parallel factors is determined by the squared Euclidean
norm of columns of .
It is common to assume that the noise has a zero mean

Gaussian distribution with variance , and is independently
added to each element of the tensor in (1).
Let a vector parameter containing all parameters of our

model be arranged as

(2)

The maximum likelihood solution for consists in minimizing
the least squares criterion

(3)

where stands for the Frobenius norm.
We wish to compute the Cramér-Rao lower bound for esti-

mating . In general, for this estimation problem, the CRLB is
given as the inverse of the Fisher information matrix, which is
equal to [29]

(4)

where is the Jacobi matrix (matrix of the first-order deriva-
tives) of with respect to . In other words, the Fisher infor-
mationmatrix is proportional to the approximate Hessian matrix
of the criterion, [39].
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Let denote the Hadamard (elementwise) product of ma-
trices ,

(5)

Theorem 1 [28]: The Hessian can be decomposed into low
rank matrices under the form as

(6)

where contains submatrices given by

(7)

is the permutation matrix of dimension defined in
[28] such that for any matrix ,
and is the Kronecker delta, and is a short-hand
notation for , i.e. a diagonal matrix containing
all elements of a matrix on its main diagonal. Next,

(8)

and

(9)

where denotes the Kronecker product, is an identity ma-
trix of the size , and is a block diagonal matrix
with the given blocks on its diagonal. Note that the Hessian in
(6) is rank deficient because of the scale ambiguity of columns
of factor matrices [27], [41]. It has dimension

but its rank is at most .
A regular (reduced) Hessian can be obtained from by

deleting rows and corresponding columns in ,
because the estimation of one element in the vectors ,

, can be skipped. The reduced
Hessian may have the form

(10)

where

(11)

and is an matrix of rank . For example,
one can put for . With
this definition of , is a Hessian for estimating the first
factor matrix and all other vectors , ,

without their first elements. In the sequel, however, we
use a different definition of . Note that each can be quite
arbitrary, together facilitate a regular transformation of nuisance
parameters, which does not influence CRLB of the parameter of
interest.
The CRLB for the first column of , denoted simply as ,

is defined as times the left-upper submatrix of of the
size ,

(12)

Substituting (6) in (10) gives

(13)

where and . Inverse of can be
written using a Woodbury matrix identity [40] as

(14)
provided that the involved inverses exist.
Next,

(15)

(16)

Put

(17)

(18)

and let be the upper-left submatrix of , symboli-
cally . Finally, let and be the upper-left
element and the first row of , respectively. Then

(19)

The CRLB represents a lower bound on the error covariance
matrix for any unbiased estimator of .
The bound is asymptotically tight in the case of Gaussian noise
and least squares estimator, which is equivalent to maximum
likelihood estimator, under the assumptions that the permutation
ambiguity has been solved out (order of the estimated factors
was selected to match the original factors) and scaling of the
estimator is in accord with the selection of the matrix .

B. Cramér-Rao-Induced Bound for Angular Error

considered in the previous subsection is a ma-
trix. In applications it is practical to characterize the error of the
factor in the decomposition by a scalar quantity. In [30] it was
proposed to characterize the error by an angle between the true
and the estimated vector, and compute a Cramér-Rao-induced
bound (CRIB) for the squared angle. The CRIB may serve a
gauge of achievable accuracy of estimation/CP decomposition.
Again, it is an asymptotically (in the sense of variance of the
noise going to zero) tight bound on the angular error between
an estimated and true factor.
The angle between the true factor and its estimate

obtained through the CP decomposition is defined through its
cosine

(20)
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The Cramér-Rao induced bound for the squared angular
error will be denoted in the
sequel. in decibels (dB) is then defined as

.
Before computing we present another interpreta-

tion of this quantity. Let the estimate be decomposed into a
sum of a scalar multiple of and a reminder, which is orthog-
onal to ,

(21)

where and . Then, the Distor-
tion-to-Signal Ratio (DSR) of the estimate can be defined as

(22)

A straightforward computation gives

(23)

The approximation in (23) is valid for small . We can see
that serves not only as a bound on the mean squared
angular estimation error, but also as a bound on the achievable
Distortion-to-Signal Ratio.
Theorem 2 [30]: Let be the Cramér-Rao bound

on covariance matrix of unbiased estimators of . Then the
Cramér-Rao-induced bound on the squared angular error be-
tween the true and estimated vector is

(24)

where

(25)

is the projection operator to the orthogonal complement of
and denotes trace of a matrix.

Proof: A sketch of a proof can be found in [30]. It is based
on analysis of a mean square angular error of a maximum
likelihood estimator, which is known to be asymptotically tight
(achieving the Cramér-Rao bound). Note that a conceptually
more straightforward but longer proof would be obtained
through the formula for CRLB on a transformed parameter, see
e.g., Theorem 3.4 in [44]. In particular,

(26)

where is the Jacobi matrix of the mapping representing
the angular error as a function of the estimate .
Theorem 3: The can be written in the form

(27)
where is the submatrix of in (18), ,

(28)

for , and denote the upper-right el-
ement and the first column of , respectively, and in the
definition of (18) takes, for a special choice of matrices ,
the form

(29)
Proof: Substituting (12) and (19) into (24) gives, after

some simplifications,

(30)

This is (27), because

(31)

Next, assume that is defined as in (11), but are arbitrary
full rank matrices of the dimension . Then, com-
bining (17), (9), (11) and (16) gives

(32)

where

(33)

for . Note that the expression
is an orthogonal projection operator to the columnspace of .
If is chosen as the first rows of

(34)

then and consequently

.

Note that the first row and the first column of are zero.
Theorem 4: Assume that all elements of the matrices

in (5) are nonzero. Then, the matrix in Theorem 3 can be
written in the form

(35)

where

(36)

(37)
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(38)

(39)

for . In (37) and (39), “ ” stands for the element-
wise division.

Proof: See Appendix B.
Note that in place of inverting the matrix of the size
, Theorem 4 reduces the complexity of the CRIB compu-

tation to inversions of the matrices of the size . The
Theorem can be extended to computing the inverse of the whole
Hessian in operations, see [48].
Finally, note that the assumption that elements of must

not be zero is not too restrictive. Basically, it means that no
pair of columns in the factor matrices must be orthogonal. The
Cramér-Rao bound does not exhibit any singularity in these
cases, and is continuous function of elements of . If some
element of is closer to zero than say , it is possible to
increase its distance from zero to that value, and the resultant
CRIB will differ from the true one only slightly.
Theorem 5: (Properties of the CRIB)
1) The CRIB in Theorems 3 and 4 depends on the factor ma-
trices only through the products .

2) The CRIB is inversely proportional to the signal-to-noise
ratio (SNR) of the factor of the interest (i.e. )
and independent of the SNR of the other factors,

, .
Proof: Property 1 follows directly from Theorem 3. Prop-

erty 2 is proven in Appendix C.

III. SPECIAL CASES

A. Rank 1 Tensors

In this case, the matrix is zero, and

(40)

In (40), due to the convention that the factor matrices
, , have columns of unit norm. The result (40) is in

accord with Harshman’s early results on uniqueness of rank-1
tensor decomposition [8].

B. Rank 2 Tensors

Consider the scaling convention that all factor vectors except
the first factor have unit norm. Let , , be defined as

for

for .
(41)

It follows from Theorem 5 that the CRIB on is a function
of multiplied by . It is symmetric function
in and possibly nonsymmetric in . A closed form

expression for the CRIB in the special case is subject of the
following theorem.
Theorem 6: It holds for rank 2 tensors

(42)

where

(43)

(44)

(45)

Proof: See Appendix D.
Note that the expressions (44), (45) contain, in their denomi-

nators, terms . If any of these terms goes to zero, then
quantities and go to infinity. In despite of this, the whole
CRIB remain finite, because and appear both in the numer-
ator and denominator in (42).
For example, for order-3 tensors we get (using e.g.,

Symbolic Matlab or Mathematica)

(46)
The above result coincides with the one derived in [29]. As far
as the stability is concerned, the CRIB is finite unless either the
second or third factor have co-linear columns. Note that the fact
that the CRIB for does not depend on can be linked to the
uni-mode uniqueness conditions presented in [23].
For , the similar result is hardly tractable. Unlike the

case , the result depends on . A closer inspection of
the result shows that the CRIB, as a function of , achieves its
maximum at , and minimum at . Therefore we
shall treat these two limit cases separately. We get [(47)-(48) at
the bottom of the next page]. As far as the stability is concerned,
we can see that the CRIB is always finite unless two of the factor
matrices have co-linear columns.
Similarly, for a general , we have for

(49)

C. A Case With Two Factor Matrices Having Orthogonal
Columns

This subsection presents a closed-form CRIB for a tensor of
a general order and rank, provided that two of its factor matrices
havemutually orthogonal columns. The result cannot be derived
from Theorem 5, because assumptions of the theorem are not
fulfilled.
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Theorem 7: When the factor matrices and both have
mutually orthogonal columns, it holds

(50)

where for .
Proof: See Appendix E.

Theorem 7 represents an important example when a tensor
reshaping (see Section V-A. and [34] for more details) enables
very efficient (fast) CP decomposition without compromising
accuracy. It has close connection with orthogonally constrained
CPD [36], [37], [38].

IV. CRIB FOR TENSORS WITH MISSING OBSERVATIONS

It happens in some applications, that tensors to be decom-
posed via CP have missing entries (some observations are
simply missing). In this case, it is possible to treat stability of
the decomposition through the CRIB as well. The only problem
is that it is not possible to use expressions in Theorems 3–8 in
such cases.
Assume that the tensor to be studied is given by its factor ma-

trices and a 0–1 “indicator” tensor of the same
dimension as , which determines which tensor elements are
available (observed). The task is to compute CRIB for columns
of the factor matrices, like in the previous sections. The CRIB
is computed through the Hessian matrix as in (12) and (20),
but its fast inversion is no longer possible. The Hessian itself
can be computed as in its earlier definition

(51)

where is the parameter of the model (2). More specific ex-
pressions for the Hessian can be derived in a straightforward
manner.

Theorem 8: Consider the Hessian for tensor with missing
data as an partitioned matrix

where . Then [see
(52) at the bottom of the page], denotes the mode-
tensor-vector product between and [4], and

(53)
Proof: See Appendix F.

Theorem 8 can be used either to compute the CRIB for ten-
sors withmissing elements, or for implementing dampedGauss-
Newton method for finding the decomposition in difficult cases,
where ALS converges poorly.

V. APPLICATION AND EXAMPLES

A. Tensor Decomposition Through Reshape

Assume that the tensor to-be decomposed is of dimension
. The tensor can be reshaped to a lower dimensional

tensor, which is computationally easier to decompose, so that
the first factor matrix remains unchanged. The topic will be
better elaborated in our next paper [34], in this paper we present
only the main idea on two examples, to demonstrate usefulness
of the CRIB.
In the first example, consider . The tensor in (1) can

be reshaped to an order-3 tensor

(54)

Both the original and the re-shaped tensors have the same
number of elements ( ) and the same noise added to
them.
The question is, what is the accuracy of the factor matrix of

the reshaped tensor compared to the original one. The former
accuracy should be worse, because a decomposition of the re-
shaped tensor ignores structure of the third factor matrix. The

(47)

(48)

for

for
(52)
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TABLE I
ESTIMATED CRIBS [dB] ON BEST FIT CP COMPONENTS OF FLUORESCENCE TENSOR COMPUTED FOR ASSUMED RANK , 2, 3, 4

question is, by how much worse. If the difference were neg-
ligible, then it is advised to decompose the simpler tensor (of
lower dimension).
If the tensor has rank one, accuracy of both decompositions

is the same. It is obvious from (40).
Let us examine tensors of rank 2. If the original tensor has

scalar products of columns of the factor matrices , , and
, the reshaped tensor has scalar products , , and ,

respectively. of the reshaped tensor is independent
of , while CRIB of the original tensor is dependent on ,
so there is a difference, in general. The difference will be
smallest for (orthogonal factors) and largest for close
to 1 (nearly or completely co-linear factors along the first
dimension).
The smallest difference between for the reshaped

tensor and for the original one is

and the largest difference is

We can see that the difference may be large if the second or
third factor matrix of the reshaped tensor has nearly co-linear
columns ( or ). For example, for a tensor with

, , , the loss of accuracy
in decomposing reshaped tensor in place of the original one is
11.22 dB. If is changed to 1, the loss is only slightly higher,
11.23 dB. If , the loss is 0 dB for any (com-
pare Theorem 7). If , and , the
loss is 8.5 dB.
Another example is a tensor of an arbitrary order and rank

considered in Theorem 7. Let this tensor be reshaped to the
order-3 tensor of the size . Comparing
the of the original tensor and of the reshaped tensor
shows that these two coincide. It follows that the decomposition
based on reshaping is lossless in terms of accuracy.

B. Amino Acids Tensor

A data set consisting of five simple laboratory-made samples
of fluorescence excitation-emission (5 samples 201 emission
wavelengths 61 excitation wavelengths) is considered. Each
sample contains different amounts of tryptophan, tyrosine, and
phenylalanine dissolved in phosphate buffered water. The sam-
ples were measured by fluorescence on a spectrofluorometer

Fig. 1. Illustration for emission components from best-fit decompositions over
100 Monte Carlo runs for example VI-A. (a) Estimated components as .
(b) Estimated components as . (c) Estimated components as .
(d) Estimated components as .

[43]. Hence, a CP model with is appropriate to the fluo-
rescence data.
The tensor was factorized for several possible ranks using

the fLM algorithm [28]. CRIBs on the extracted components
were then computed with the noise levels deduced from the error
tensor

(55)

The resultant CRIB’s are computed for all columns of all factor
matrices and are summarized in Table I.
Note that due to the “ ” definition, high CRIB in dB

means high accuracy, and vice versa. A CRIB of 50 dB means
that the standard angular deviation (square root of mean square
angular error) of the factor is cca 0.18 ; a CRIB of 20 dB cor-
responds to the standard deviation 5.7 .
The second mode to the decomposition, which represents in-

tensity of the data versus the emission wavelength, for ,
3, 4 and 8 is shown in Fig. 1. We can see that the CRIB allows to
distinguish between strong/significant modes of the decomposi-
tion and possibly artificial modes due to over-fitting the model.
The criterion is different in general than the plain “energy” of
the factor; if a factor has a low energy, it will probably have
high CRIB, but it might not hold true vice versa. A high energy
component might have a high CRIB.
In the next experiment, we have studied how much the ac-

curacy of the decomposition is affected in case that some data
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Fig. 2. CRIB for the second-mode components of CP decomposition of tensor in section VI.A with missing elements and mean square angular error obtained in
simulations versus percentage of the missing elements.

are missing (not available). The decomposition with the correct
rank and estimated as in (55) was taken as a ground
truth; the 0-1 indicator tensor of the same size was randomly
generated with a given percentage of missing values. The CRIB
of the second mode factors was plotted in Fig. 2 as a function
of this missing value rate. The figure also contains mean square
angular error of the components obtained in simulations. Here
an artificial Gaussian noise with zero mean and variance was
added to the “ground truth” tensor. The decomposition was ob-
tained by a Levenberg-Marquardt algorithm [28] modified for
tensors with missing entries.
A few observations can be made here.
• CRIB coincides with MSAE for the percentage of the
missing entries smaller than 70%. If the percentage ex-
ceeds the threshold, CRIB becomes overly optimistic.

• In general, accuracy of the decomposition declines slowly
with the number of missing entries. If the number of
missing entries is about 20%, loss of accuracy of the
decomposition is only about 1–2 dB.

C. Stability of the Decomposition of Brie’s Tensor

Brie et al. [20] presented an example of a four-way tensor
of rank 3, which arises while studying the response of bacterial
bio-sensors to different environmental agents. The tensor has
co-linear columns in three of four modes and the main message
of the paper is that its CP decomposition is still unique. In this
subsection we verify stability of the decomposition.
The factor matrices of the tensor have the form

Assume for simplicity that all factors have unit norm, ,
. Due to Theorem 5 it holds that CRIB on is a

function of scalars , , ,
, , and , which is the

dimension of . Then, the matrices , ,
3, 4, have the form

A straightforward usage of Theorem 4 is not possible, because
some of the involved matrices become singular. The CRIB it-
self, however, is finite and can be computed using an artificial
parameter as a limit. The limit CRIB is computed for modified
matrices at ,

If any of the correlations is zero, it is also augmented
by .
The limit CRIB can be shown to be independent of off-diag-

onal elements of , unless is singular. Assume that is
regular. The result, obtained by Symbolic Matlab, is

(56)

It follows that the decomposition is stable, unless all three fac-
tors in some mode are collinear.

D. Maximum Stable Rank

A theoretically interesting question is, what is the maximum
rank of a tensor of a given dimension which has a stable CP
decomposition (with finite CRIB). For easy reference, we shall
call it maximum stable rank and denote it .
An upper bound for the maximum stable rank can be de-

duced from the requirement that the number of free parameters
in the model, which is in CP decompo-
sition, cannot exceed dimension of the available data, which is

. It follows that

(57)
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where denotes the lower integer part of . It can be verified
numerically that for many (and maybe all1) tensor dimensions,
an equality in (57) holds. In other words, it means that the CRIB
computed, e.g., via Theorem 4 for a CP decompositionwith rank

and some (e.g. random) factormatrices is finite. For
example, the maximum stable rank is for
tensors, and for tensors. For order-8 tensors
of dimension , (8 ), it holds .
It might be interesting to compare the maximum stable rank

with the maximum rank and the maximum typical rank (to be
explained below) for given tensor dimension, if they are known
[46]. If the elements of a tensor are chosen randomly according
to a continuous probability distribution, there is not a rankwhich
occurs with probability 1 in general. Such rank, if exists, is
called generic. Ranks which occur with strictly positive prob-
abilities are called typical ranks. For example it was computed
in [10] that probability for a real random Gaussian tensor of the
size to be 2 and 3 is , and , respectively.
We can see that no tensor of the rank 3 and the dimension has
a stable decomposition. For tensors of the dimension
the typical rank is 5 [10], it is a generic rank—but no decompo-
sition of these rank-5 tensors is stable, as .
Next, it might be interesting to compare the maximum stable

rank with the maximum rank for unique tensor decomposition,
or prove that these two coincide. Liu and Sidiropoulos [11], [31]
derived a necessary condition for uniqueness of the CP decom-
position, which, according to a formulation in [45] reads

(58)

where means the Khatri-Rao product. The condition (58) is
equivalent to the condition that the matrices

have all full column rank,
, which is further equivalent to the condition that the

product are regular for . Finally note that

where was defined in (5) and appears in computation of the
CRIB.
Unfortunately, it appears that the condition (58) is only nec-

essary, but not sufficient for uniqueness. It is often fulfilled for
higher than . Thus a relation between the stability and

uniqueness of the CP decomposition remains open question for
now.

VI. CONCLUSIONS

Cramér-Rao bounds for CP tensor decomposition represent
an important tool for studying accuracy and stability of the
decomposition. The bounds derived in this manuscript serve
as a theoretical support for a method of the decomposition
through tensor reshaping [34]. As a side result, a novel method
of inverting Hessian matrix, which is more computationally
efficient, is derived for the problem. It enables a further im-
provement of speed of the fast Gauss-Newton for the problem

1We do not have yet a formal proof that the equality in (57) holds for all tensor
dimensions and orders.

[28], [48]. A novel expression for Hessian for CP decompo-
sition of tensor with missing entries has been derived. It can
serve for assessing accuracy of CP decomposition of these
tensors without need of long Monte Carlo simulations, and
for implementing a damped Gauss-Newton algorithm for CP
decomposition of these tensors.
A direct link between stability and essential uniqueness re-

mains to be an open theoretical question. In particular, it is not
known yet for sure if stability implies the essential uniqueness.
CRB expressions similar to the ones derived in this paper can

be also derived for other important special tensor decomposition
models such as INDSCAL (where two or more factor matrices
coincide) [16], [39], or for the PARALIND model, where the
factor matrices have certain structure [23], and for block factor-
ization methods.

APPENDIX A

Matrix Inversion Lemma (Woodbury identity): Let , , ,
and are matrices of compatible dimensions such that the fol-
lowing products and inverses exist. Then

(59)
APPENDIX B

Proof of Theorem 4: Let the matrices and in (18) be
partitioned as

(60)

where the left-upper blocks have the size . Then, using a
formula for inverse of partitioned matrices, the left-upper block
of in (18) can be written as

(61)

A key observation which enables a fast inversion of the term
is that

(62)

where

(63)

(64)

(65)

Similarly,

(66)

where

(67)

(68)
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Then the matrix in (61) can be written as

(69)

where

(70)

(71)

Now, can be easily inverted using the matrix inversion
lemma (59),

(72)

Inserting (72) in (61) gives, after some simplifications, the result
(35).

APPENDIX C

Proof of Theorem 5: Consider the change of scale of
columns of factor matrices up to their first columns. As in
Section II assume that the scale change is realized in ,
while the other factor matrices have columns of unit norm. The
theorem claims that the substitution into (27)
where , , has no influence on

.
The substitution leads to and

while and , , remain the
same. Consequently, , , remain unchanged
while for . Now, we can sub-
stitute into (35) assuming that the condition of Theorem 4 is
satisfied.
Let denote the matrix in (39) after the substitution

. It can be shown that
using the rules

(73)

(74)

(75)

and the fact that diagonal matrices commute. Using the same
rules in further substitutions, after some computations, the in-
dependence of on follows.

APPENDIX D

Proof of Theorem 6: Again, assume for simplicity that all
factors have unit norms. It holds

and

(76)

(77)

The matrix in (32) can be decomposed as where

(78)

(79)

Then the matrix in (18) can be rewritten using the Woodbury
identity (59) as

(80)

Now, put and write it in the block form as

(81)

where has the size 4 4. The bottom-right block of
dimension is easy to be inverted using
the Woodbury identity again, because it can be written as

(82)

where

(83)

(84)

(85)

(86)

After some computations, we receive the result (42).

APPENDIX E

Proof of Theorem 7: Under the assumption of the Theorem,
it holds that the matrix is diagonal and
(identity matrix). Thanks to Theorem 5 we can assume, without
any loss of generality, that as well. It can be shown
for in (5) that for all pairs

. Only and are possibly different.
Note that the first row of is .
It follows from these observations that all non-diagonal
blocks of in (6) with are

identical, diagonal, having 1 at positions ,
and 0 elsewhere. In other words, these

can be written as , where is a 0-1 matrix of the
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size , the -th column of has the value 1 at position
and 0 elsewhere.

Computation of the CRIB can proceed from equation (61) by
inserting the special form of the blocks of and and using
the Woodbury identity (59).

APPENDIX F

Proof of Theorem 8: The following identities are used in this
proof

(87)

(88)

(89)

Here, dimensions of , , and are assumed to match
accordingly.
The approximate Hessian in (51) is given by

(90)

where is the Jacobian for the complete data.
We have

(91)

where unit vector for is the -th column of
the identity matrix of size .
An entry of a sub matrix for ,

and is given by

(92)

(93)

where is the Kronecker delta, , for
. This leads to that a diagonal sub-matrix is a

diagonal matrix as in Theorem IV.
For off-diagonal sub matrices of size

, we have

(94)

(95)

This leads to the compact form in Theorem 8.
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