OPTIMAL SOBOLEV EMBEDDINGS - NOTES TO THE
DISSERTATION

LUBOS PICK

The principal goal of the dissertation is to study Sobolev-type inequalities
involving rearrangement invariant Banach function norms. The emphasize is put
on the role of Banach function spaces involved in the inequalities, in particular
on their optimality with respect to a given environment.

1. MOTIVATION AND INTRODUCTION

Let €2 be a domain of finite measure in R" with n > 2. With no loss of generality
we shall assume that 2] = 1. We denote by 9t(€2) the class of real-valued
measurable functions on Q and by 91, (Q2) the class of nonnegative functions in

By ¢, C' we shall denote various positive constants independent of appropriate
quantities and not necessarily the same at each occurrence. We will write A < B
if there is a positive constant C', independent on appropriate quantities, such that
AL CB.

For two normed function spaces X,Y of functions defined on {2, we say that
X is continuously embedded into Y, and write

(1.1) X =Y,
when there is a positive constant C' such that, for every u € X, we have
[ully < Cllullx-

If (1.1) is satisfied, we say that the space Y is a larger space than X, or that
| - Iy is a smaller norm than || - ||x. If, moreover, the spaces X and Y do not
coincide in the set-theoretical sense, we say that Y is essentially larger than X.
If none of the relations X — Y, Y — X holds, then we say that the spaces X
and Y are incomparable.

For example, we have [P — L7 if and only if 0 < ¢ < p < o0, since {2 is of
finite measure.

By a Sobolev inequality we mean an estimate of a certain norm of a given
function of several variables by another, possibly different, norm of its gradient.
So, if XY is a pair of Banach spaces of functions defined on €2, the Sobolev
inequality is the estimate

(1.2) [ully < ClIV™ullx,  we G5 Q).
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Instead of a Sobolev inequality we will also often talk about a Sobolev embedding,
and write

(1.3) Wi (X) — Y.

Here, the subscript 0 denotes that the functions in (1.2) are of compact support
on 2 and the superscript m stands for the order of the embedding (the order of
the gradient involved). The spaces X and Y are respectively called the domain
space and the range space of the Sobolev embedding.

Our main objective is to study optimality of various types of function spaces
in the Sobolev embeddings. Let us explain what we mean by optimality. If the
space Y in (1.3) can be replaced by a smaller space Y’, say, and the Sobolev
embedding

(1.4) W(X) — Y

is still true, then, of course, (1.4) is an essentially stronger result than (1.3). If
such an improvement is not possible (within a given category of function spaces),
we say that Y is an optimal range (again, within its category). Analogously we
treat optimality of the domain space X. If neither the range nor the domain can
be improved, we talk about optimal pair of function spaces.

We will now illustrate the key role of various function spaces in Sobolev embed-
dings. We begin with the familiar Lebesgue (or L?) spaces and then extend our
thoughts to broader scales of function spaces. We will, for the sake of simplicity,
restrict ourselves to the case of the first-order gradient.

Perhaps the simplest form of the classical Sobolev inequality asserts that, given
1 < p < n, there exists C' > 0 such that

n—p

(1.5) (/ﬂ\u(mf"p dx)"p < C’(/Q\(Vu)(x)\pd:c)l/p, u e CHO).

In case when p > n and 2 is a Lipschitz domain, a function whose gradient
belongs to LP()) is known to be Holder continuous, namely,

sup M < C(/Q |(Vu)(x)|? da:)l/p, u € C5(Q),

eyen [T —y|t™

which, in particular, implies

(1.6) lulle- < ¢ [ (0@ a ) T ueao.

The case when p = n is special. We call it the limiting case of Sobolev embed-
ding. It is clearly the most interesting case, and, indeed, also the most difficult
one. It is known that, for every ¢ < oo,

(1.7) (/ﬂ \u(x)|qu) v < c(/ﬂ |(Vu)(x)|"dx) l/n, ue CLQ).
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Standard examples of functions with an appropriate “logarithmic growth to in-
finity” near the origin, say, show that, although np/(n — p) — oo when p — n—,
one cannot take the L>-norm on the left side of (1.7).

Let us now rewrite these inequalities in terms of embeddings. We get

(1.8) WE(LP) — Lvs, 1<p<n
(1.9) Wy (LP) — L*, n<p< oo;
(1.10) Wy (L") — LY, for every ¢ < oo.

Now, within the limited environment of L” spaces, these results cannot be im-
proved in any possible way. Note the interesting fact: while (1.8) contains an op-
timal pair of L? norms, (1.9) does not have the optimal domain norm and (1.10)
does not have the optimal range norm, since there is no largest LP space that
would render (1.9) true and, likewise, there is no smallest L7 space that would
render (1.10) true.

Clearly, the embeddings in (1.9) and (1.10) are not satisfactory from the func-
tion spaces point of view, and it is natural to ask whether any reasonable im-
provement is at sight. The answer is in the positive, but we have to pay for
the improvement by being forced to consider other, more complicated scales of
function spaces than LP spaces.

There are two basic directions in which we can extend our thoughts. The first
one is the direction of Lorentz spaces, which requires us to introduce the notion of
the non-increasing rearrangement. The second direction is that of Orlicz spaces,
involving general convex functions in place of powers.

Given f € M(Q2), we define its non-increasing rearrangement, f*; on (0, 1), by

fH(t) =inf{A > 0; {z € Qs [f(z)| > A} <t} t€(0,1).

Note that, when f € 9(Q), then f* € 9, (0,1).
For 0 < p,q < oo, we define the Lorentz space LP1(S)) as the collection of all
functions u € 9(2) such that the quantity

wH(t)tr

U =
lullp = | o
is finite.

We will need to compare various function spaces in the sense of a continuous
embedding. In the context of Lorentz spaces, the following elementary embedding
property will be useful:

(1.11) LY s [P7 p€(0,00], 0<g<r<c0.

In particular, LPP = LP.
It turns out that, while (1.8) is an optimal result within the environment of
Lebesgue spaces, it is not optimal in the broader category of Lorentz spaces,
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Indeed, we can improve it either by making the range space smaller:

(1.12) W) — L3P, 1<p<n,
or by making the domain space larger:
(1.13) Wi (LP75) — Lar, 1<p<n.

These embeddings are due to Peetre [29]. Results of this sort can be also traced
in the works of O’Neil and Hunt in mid 1960’s.

Using (1.11), it is easy to verify that both (1.12) and (1.13) are essential im-
provements of (1.8), and that both these embeddings are optimal within the
context of Lorentz spaces.

In order to improve (1.10), a natural appropriate step seems to be considering
Orlicz spaces. We say that A is a Young function when A is convex and increasing
on [0, 00) and

lim ¢t/A(t) = lim A(t)/t = oo.

t—04 t—o0

lulla = inf{A > o;/QA(@) dr < 1}

is called the Luzemburg norm of u and the set Ly = L4(€2) of all functions u
such that ||ul|4 < oo is called the Orlicz space generated by A.

Comparison of Orlicz spaces is considerably less trivial than that of Lebesgue
or Lorentz spaces. Given two Young functions A, B, we have L, — Lpg if and
only if there is a positive constant C' such that, for every t € (1, 00),

B(t) < A(CY).

Moreover, L, is essentially smaller than Lp if and only if A > B, that is,
Ljs— Lpand

The quantity

. A(Nt)

"R BG)

A particular interest should be paid to a special subclass of Orlicz spaces, called

Zygmund classes. Let A be a Young function such that A(t) = expt® for some

a > 0 and all large values of ¢. We then call the corresponding Orlicz space L4
an ezrponential Zygmund class and write

=oo for every A > 0.

L =expL®.
If A(t) = t?(logt)® for some p € (0,00), a > 0 and all large values of ¢, then we
talk about logarithmic Zygmund class and write
La= LP(logL)".
Independently of one another, Pokhozhaev [30], Trudinger [37] and Yudovich [38]
have shown that there is a constant C' such that

(1.14) WE(L") — exp L™,
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where ||ul| , is the norm in the Orlicz space exp L", generated by any Young

exp L™
function A which is equivalent for large ¢ to exp ", n’ = n/(n — 1). This space is
essentially smaller than any L9-space with finite ¢, but, naturally, it is essentially
larger than L. Hence it is an essential improvement of (1.10).

Hempel, Morris and Trudinger [25] showed that the exp L™ -norm on the left
hand side of (1.14) cannot be replaced by any essentially larger Orlicz norm.
Thus, the embedding (1.14) has an optimal Orlicz range.

Though (1.14) is already quite a satisfactory result, its range space still can be
further improved. Of course this is not possible by taking a smaller Orlicz range,
as mentioned above. However, it can be done if we allow yet another context of
function spaces than that of Orlicz spaces.

In order to get such a refinement, we will consider the so-called Lorentz-
Zygmund spaces LP%*(Q)). These spaces were introduced and studied by Bennett
and Rudnick in [14]. For 0 < p,q < 0o and « € R, define

ot o (3))

Lorentz—Zygmund spaces present a generalization of Lorentz spaces as well as of
Zygmund classes. Moreover, they include new non-trivial important spaces that
do not fall into any of these categories. Let us recall some elementary useful
relations involving these spaces: for « = 0, we have LP%* = [P9  Next, for
a >0,

u o —
el g0 = | o

exp L% = L™« and LP(log L)® = LM,

Returning back to our Sobolev embedding, it can be shown that we can replace
the exp L™ -norm in (1.14) by a larger norm in the following way: for u € C3(9),
we have,

(1.15) (/01 (1:;((?) ) %) : ¢ (/Q |(VU)($)|"dx) l/n.

Using the definition of Lorentz—Zygmund spaces, we can rewrite (1.15) as
(1.16) Wy (L™) e Lot

This embedding can be derived from classical capacitary estimates of Maz’ya
(see [28, pages 105, 109]); it can also be traced in [29] (cf. [21] for more details),
and it was stated explicitly by Hansson ([24]) and by Brézis and Wainger ([17]).

Moreover, it follows from the embedding theorem of Sharpley [32] that the
range space in (1.16) is essentially smaller than exp L™ and therefore (1.16) is
an essentially better embedding than (1.14).

Lorentz-Zygmund spaces and Orlicz spaces are two independent classes of func-
tion spaces, of quite a different nature, having a nontrivial intersection (for ex-
ample, Lebesgue spaces belong to both). A more interesting example is exp L",
which is an Orlicz space as well as it is a Lorentz-Zygmund space. In (1.14),
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exp L™ is optimal as an Orlicz space, but it is not optimal as a Lorentz-Zygmund
space, since it can be replaced by L°>™~1 which is essentially smaller.

We can now ask about optimality of various Sobolev embeddings within the
context of each of these two categories of function spaces. We start with Lorentz—
Zygmund spaces.

Problem 1.1. Is either the range space or the domain space in (1.16) optimal
among Lorentz-Zygmund spaces?

An interesting particular answer to this question was given by Edmunds, Opic
and the author in [6].

Theorem 1.2. The range space L1 is the smallest Lorentz—Zygmund space
such that (1.16) holds. There is no optimal domain Lorentz—Zygmund space
in (1.16) since L™ can be replaced by any space from the scale

(1.17) {LW;%—%} . 1<r<n

Every two spaces in (1.17) are incomparable. The largest domain which we can
obtain from this result is the sum of endpoint spaces. We thus get

(118) Wol(L" + L”J;*l/n') o, [eom—l

It is worth noticing that the answer to the optimality problem in the limiting
case of embedding is not quite satisfactory when we restrict ourselves to the
Lorentz—Zygmund spaces.

Turning our attention to Orlicz spaces, we first have to quote the following
remarkable general result on the optimality of an Orlicz range space by A. Cianchi

([20]).

Theorem 1.3. Let A be a Young function, satisfying

© A LA
/ (5) ds = 00 and / (5) ds < 0.
1 0

Sn’+1 Sn’+1

Set

Then
(1.19) ull,, @ < IVullige, — we Co(R),

and (1.19) no longer holds when A, is replaced by a Young function B such that
B> A,.



OPTIMAL SOBOLEV EMBEDDINGS - NOTES TO THE DISSERTATION 7

However, the Cianchi theorem does not give any information on the optimality
of the Orlicz domain space, and the same goes for the above-mentioned result of
Hempel, Morris and Trudinger [25].

We thus have to consider the following

Problem 1.4. In both of the embeddings

(1.20) WE(LP) — L,  1<p<n,

(1.21) W(L") — exp L™,

range is optimal in Orlicz spaces. Are the domain spaces also optimal?

Rather surprisingly, it turns out that L"(2) is not optimal as an Orlicz domain
space in (1.14), and, even worse, that such an optimal Orlicz domain space does
not exist at all (recall that a similar situation occurring in the context of Lebesgue
spaces was described by (1.7), in which case there was no optimal Lebesgue range
space). This follows from

Theorem 1.5. Let A be a Young function such that

(1.22) [tllexp (@) < ClIVUllL @)
Then there exists another Young function, Ay, say, such that
(1.23) A> A
and
[llop 0y < CIVUlL1 0

The proof is constructive; first, the embedding Wi (L) < exp L™ is shown to
be equivalent to

b A(s
(1.24) /1 Sn§+)1 ds < Clogt,
and then, given A, we construct B such that A > B but (1.24) is still true when
A is replaced by B.

The picture is different in the case of the embedding (1.20). By a completely dif-
ferent method involving generalized P’olya-Szegt inequality and certain thoughts
on fundamental functions it is proved in [11, Chapter 9] that the domain in (1.20)
is optimal in the context of Orlicz spaces.

These results show that neither the environment of Orlicz spaces, though a lot
finer than that of Lebesgue spaces, does not give entirely satisfactory answers to
the optimality questions.

To summarize, we obtained the best possible answers to the optimality problem
within each of the categories of Orlicz spaces and Lorentz—Zygmund spaces, and
observed that in neither of these classes of function spaces the answers are entirely
satisfactory. We will thus turn our attention to the relatively wide class of the so-
called rearrangement-invariant Banach function spaces, which provide a common
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roof for all the spaces that we have seen so far. In particular, an example of
a questions which we intend to pursue and solve, is

Problem 1.6. Are the domain space and the range space in (1.18) optimal
among rearrangement-invariant spaces?

To finish this introductory section, let us return to the embedding (1.9). If we
are interested in sharp results concerning the range space, then the rearrangement
techniques are not fine enough. This is a simple consequence of the fact that the
range space L is itself the smallest possible rearrangement-invariant space at
all. Therefore, we will also consider the following

Problem 1.7. What kind of optimality results can be obtained when the range
space is one of the spaces with controlled integral or pointwise oscillation, namely
a Holder, a Campanato or a Morrey space?

All the problems mentioned above are pursued and answered in the disserta-
tion.
2. ELEMENTARY PROOF OF SHARP SOBOLEV EMBEDDINGS

First, in Chapter 2, we present a new elementary proof of (1.12) and (1.16).
Our argument is based on a weak version of the Sobolev-Gagliardo inequality
combined with the well-known Maz’ya truncation trick.

As an interesting by-product, our techniques provide us with a qualitatively
new function space, giving us a further non-trivial improvement of the range
space in the limiting case of Sobolev embedding. Namely, we prove

Theorem 2.1. Assume that p € (0,00). Let W, be the function class defined by
the norm )
L () — u(t p P
Jullw, = (/ GOR0) dt) .
0
Then

(2.1) WE™(Q) — W, (Q).

The fact that this result is really sharper than (1.16) follows from the item (v)
in the following observations.

Theorem 2.2. Assume that |Q2] < co and p € [1,00). Then

(i) IxEllw,@ = (log 2)% for every measurable E C €);
(i) L) & Wp(Q);
(iii) each integer-valued u € W,(Q2) is bounded;
(iv) W,(82) is not a linear set;
(v) Wp(Q) ; BWp(Q)i
(vi) W, G W, for every 0 < p < q < oo.
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3. OPTIMALITY OF SOBOLEV EMBEDDINGS IN REARRANGEMENT-INVARIANT
SPACES

Our next goal is to consider optimality of function spaces in Sobolev embed-
dings in the context of rearrangement-invariant spaces. It is natural to consider
Sobolev spaces of higher order, say, m € N. We define the m* order gradient,
D™y, of a function u in CJ*(2), by

D"y = Z a—x:,

laj<m

where o is a multiindex of height |o|. We also define the reduced m™ order

gradient, V™u, in terms of the first order gradient V = (a%l, ey %) and the
Laplacian A = 83—;% +- 4 % as follows:
m AFy when m = 2k,
V" = .
V(A*u) when m =2k + 1,

where Alu = A(AT ), j=2,..., [%}, see [13].
The reduced gradient (or ‘trace’ gradient) is often used in applications, one of
its main advantages being perhaps the inequality

u(z)] < C(In(V™u))(z),  we CGF'(R")
(cf. [27], [40], [13]), where I,, is the Riesz potential.

We shall study Sobolev embeddings for both full and reduced gradient.
Let us begin with some observations upon the non-increasing rearrangement.

Remarks 3.1. (i) The operation of non-increasing rearrangement is not subad-
ditive. Instead, we have

(3.1) f+a)®)<f (3)+9g (%), t>0.
(i) The lack of subadditivity of non-increasing rearrangement is one of the key

motivations for introducing and working with the elementary maximal function.
Indeed, we have

(f+9)™@) < f*™() +g™(t), [, g measurable, 0 <t < 1.
(iii) Given f,g > 0 on 2, there exists » > 0 on (0,1) with

(3.2) / FH(O)h(t) dt = / f(2)g(z) d,

where g* = h.

Our basic idea is to reduce the original Sobolev inequality which involves a dif-
ferential operator, to an inequality involving Hardy-type integral operator, which
should be easier to handle. This reduction is quite complicated from technical



10 LUBOS PICK

point of view. For reasons caused by the technical complications it will be conve-
nient to work with various norm-like functionals acting on functions defined on
(0,1). The framework of r.i. norms will be our ultimate choice but first we have
to work in a broader context of quasinorms.

Definition 3.2. A quasinorm o on M, (0, 1) is defined by the following six ax-

(A1) o(f) > 0 with o(f) =0 if and only if f =0 a.e;
(A2) olcf)=co(f), c=0;

(As) o(f +9) < Clo(f) + o(g)];

(A4) fn /" f implies o(f,) /" o(f);

(As)  o(x(,1)) < o0

(Ag) toeach s, 0 < s < 1, there corresponds C' = C(s) > 0, independent of
feMm,(0,1), such that

o(rsf) < Co(f), (mf)(t) = f(st), 0 <t <1
If, in addition, o satisfies

(A7) o(f) = o(f"),

we say o is a rearrangement-invariant (r.i.) quasinorm.

Definition 3.3. Let o be an r.i. quasinorm on 9%, (0,1). Then, p is said to be
a rearrangement-invariant (r.i.) norm if we can take C' =1 in (Aj3) and if there
exists C' > 0 such that

(3.3) / f(x)dz < Co(f), | €M (0,1).

The dual of a quasinorm p is the functional

/(5) = sup / g(Oh(t)dt, g.h e M, (0,1).

o(h)=
When o is rearrangement-invariant, as a consequence of (3.2) we have
(3.4) d'(9) = 04(9"),
where the “down” dual, ¢}, is given at g by

1
dilg) = sup / GO () dr, g.h € M. (0,1).
o(h)=1J0

A functional g on M, (0, 1) satisfying (A;)—(As) with C' =1 in (A43), and (3.3),
is called a Banach function norm on (0, 1).

Remarks 3.4. (i) For a Banach function norm we have the duality principle

(3.5) =0
(see [15, Chapter 1, Theorem 2.7]).

(ii) Axiom (Ag) automatically holds for a Banach function norm which satisfies
(A7) ([15, Chapter 3, Proposition 5.11]).
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(iii) Both ¢" and ¢/, obey axioms (A;)—(A4) and, moreover, we can take C' =1
in (As). Again, (As) is verified by either ¢’ or ¢/, if and only if (3.3) holds for
0. We conclude ¢’ and ¢}, are Banach function norms if and only if one has the
L'-imbedding (3.3) for ¢; indeed, ¢’ will be an r.i. norm in view of (3.2) and

(A7).
Examples 3.5. (i) The Lebesgue quasinorm p,, 0 < p < o0, is given by

o =([ |f(t)|”dt)% -(/ f*(t)pdt)%, fem,(01)

0 (f) = esssup | f(t)] = f*(04)

0<t<1

Also,

is an r.i. norm on M, (0, 1).

(ii) A generalization of the Lebesgue quasinorms is given by the classical
Lorentz functionals g4, defined in terms of a non-negative measurable (weight)
function ¢ on (0,1) by

(3.6) 0s.0(f) = 0p(0f7).
We also denote
(3.7) Vo f) = 0p(Df™).

(iii) For a Young function A, we will denote by o4 the Luxemburg norm and
by o4y the Orlicz norm on the Orlicz space L4(£2).

We will denote by P the Hardy average operator, defined at an integrable
non-negative function g on (0,1) by

o0 =1 | g(s)ds, te(0,1)

t

We now use (3.5) to get tractable expressions equivalent to ¢’ when ¢ = g4,
0 < p < 0. In [31, Theorem 1] it was shown that if 1 < p < oo (and ¢ is any
locally integrable weight on (0,1)), then

¢P~'Pyg 01(9)
3.8 g'g%g/( + ., gEeEML(0,1).
(38) i)~ o (S5 )+ o +(0,1)
The corresponding expression for 0 < p < 1 was obtained in [35, Proposition 1]:
75 (Pg)(t
(39) (o) = o <ﬂ> L gem0.1).
(Por)(t)r

As for p = o0, it is clear that when ¢ is non-decreasing on (0, 1), then

(3.10) d(9) = o (%) e M (0,1).
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We conclude that, for g € 9t,(0, 1).

{77 (Pg)(1) if 0 <p<1
, o< ( (Per)(t) ) PRsP=S
A1 ~ P 1p 1 :
(3.11) 0a(9) Oy ( P¢pg> + gpéi)) if 1 <p< oo,
01 (%) if p = 00, ¢ non-decreasing.

Let or and op be r.i. norms on M (0,1). We shall say that pr and op satisfy
the Sobolev inequality of degree m, if there exists a C' > 0 such that, for every
u e CP(§),

(3.12) er(u™(t)) < Cop(IV™ul*(1))-

In order to obtain the analogs of (1.8), (1.14) and (1.16) for V™u we have to
replace n by n/m throughout (for the resulting inequalities see [28], [29], [33],
[36], [24] and [17]).

Here op, or stand for domain and range norms in the Sobolev imbedding,
respectively.

We are interested in when the norms involved in the Sobolev inequalities are
optimal in the sense that or cannot be replaced by an essentially larger r.i. norm
and op cannot be replaced by an essentially smaller r.i. norm.

Remark 3.6. Let or and op be quasinorms. Then, as defined above, the first-
order Sobolev inequality holds if there is a constant C' > 0 such that for every
u € C§ ()

(3.13) or (u(t)) < Cop (|Vul*(t)) .
We will however also work with an inequality slightly different from (3.13), namely

(3.14) g (u*(t)) <Cop d [(Vu)(z)|dx |, u € Cy(R).
t Jfweq: jua)|>ue (1)

We shall point out that (3.13) always implies (3.14) and that they are equivalent
when pr and op are norms.

Reduction to Hardy operators. The first step in our argument is a reduction
of the Sobolev embedding to the boundedness of certain one-dimensional Hardy
operators.

To see how the Hardy operators arise, consider a smooth radial function u(x) =

1
u(|z|) supported in the ball B = {:c € R™; |z| < wn "} of unit measure centered
at the origin. Setting r = |z|, one has

[(Vu)(r)] = [u/(r)],
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1

with u(r) = [“"" «/(s) ds or

_1 4

u(wn"rn) =n lw;_/ FOt de,  f(t) =u(s), s=wn"tn.

Again,

(V2u)(r) = (Au)(r) = u"(r) + 27’ (r),  u(wn™) = '(wn™) =0,
so that

or

(3.15) u(w;%r%)z N ("1/ f(t dt+/ f(t t——ldt)

with f(t) = (V2u)(s), s = wn " t5.

For general u, the connection with Hardy operators is made by a version of the
Pélya—Szegt inequality when m = 1 and by a convolution inequality of O’Neil
when m > 1. This connection is sharp when u is radially decreasing. It is clear
that the higher-order case will be different from the first-order case, involving, as
it does, two Hardy operators rather than just one.

Now we can state the general reduction theorem.

Theorem 3.7. Fix m,n € Z, satisfyingn > 2 and 1 <m < n—1. Let gog be an
r.i. quasinorm on MM, (0,1). Then, when m =1, a necessary and sufficient con-
dition that (3.14) hold with or and a quasinorm op on M, (0,1) is the existence
of C' > 0 for which

(3.16) on ( / ()i ds) < Cop(f), fEM(0,1).

Whenn > 3 and 2 < m < n—1, a necessary and sufficient condition that (3.12)

hold for or and another r.i. quasinorm op on 9, (0,1) is the existence of C >0
for which

U () ds ) < Cants). remo),

Note that when m = 1, op does not have to be necessarily rearrangement-
invariant.

In the case when m =1 and o and pp are r.i. norms rather than just quasi-
norms, we can formulate a refined version of Theorem 3.7.
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Theorem 3.8. Let or and op be r.i. norms on M, (0,1). Then, in order that
there is a constant C > 0 such that (3.13) holds, it is necessary and sufficient
that there exist a K > 0 for which

(3.18) oR (/tl f(s)snVds ) < Kop(f), [fe€mM.(0,1).

In view of the above result and Theorem 3.7, we have

Corollary 3.9. Let op and or be r.i. quasinorms on M, (0,1). Then, (3.13)
implies (3.14). Moreover, the two inequalities are equivalent when or and op are
noTrms.

Corollary 3.10. Let op and o be r.i. norms on M (0,1). (i) Assume that

s o p(s)sitds ) <Cants). remo),

Then the Sobolev inequality (3.13) holds.
(ii) Assume that the estimate

(3.20) o ( / (s ) < Con ( / (s 1d5)

is satisfied for every f € M (0,1). Then (3.19) is equivalent (3.13).

Remark 3.11. A short argument involving Fubini’s theorem and (Ag) yields (3.19)
equivalent to

(3.21) QR<tn /f ds+/ 7(s) )<CQD(f), fem, (0,1)

Theorem 3.12. Assume that pr is an r.i. norm such that (3.20) is satisfied.
Then

(3.22) QR</f )<09R(/f 1ds>, feM,(0,1).

In particular, op defined by

1

329 o) =on([ Fsas). remo)
t

is equivalent to the smallest r.i. norm which renders (3.13) true.

It would be of interest to know when a given r.i. norm pg satisfies (3.20).
A sufficient condition can be expressed by means of the lower Boyd index.
Given an r.i. norm g on M, (0,1), the lower Boyd indez i, is given by

. log($)
t—04 log h,(t) 7

1o =
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where

h,(t) = sup Q(th), 7f(s) = f(st), feMy(0,1), 0<s,t<]1.
20 o(f)

Theorem 3.13. Let n > 2 and 1 < m < n —1. Let or be an r.i. norm on
M, (0,1). Then

(321) o ( / £ (s ) < Con ( / £(s ) ,

holds whenever the lower index ig of or satisfies

(3.25) in>—

n—m

The optimal domain and the optimal range. Now we are in a position when
we can apply the reduction theorem (Theorem 3.7) to associate to a given range
r.i. quasinorm gp the essentially smallest quasinorm gp such that (3.14) holds
when m = 1 and (3.12) holds when n > 3 and 2 < m < n — 1. in the latter case,
op 1is rearrangement invariant.

Theorem 3.14. Suppose m,n € Z,, withn > 2 and 1 <m <n —1. Let pr be
an r.i. quasinorm on M, (0,1). For f € M, (0,1) define

(3.26) = Or (/ f(s)snt ds) if m=1

and

(3.27) op(f) = or (/1 f(s)snt ds) ifn>3 2<m<n-—1.

Then, op is a quasinorm on M, (0,1) such that (3.14) holds when m = 1
and (3.12) holds when n > 3 and 2 < m < n — 1. Moreover, it is the smallest
such quasinorm when m = 1 and the smallest such r.i. quasinorm when n > 3
and 2 < m < n —1 in the sense that if o is another, then there exists C > 0 for
which

en(f) < Co(f), feMy(0,1).

The following observation is immediately seen.

Theorem 3.15. Suppose m,n € Z,, withn >2 and1 <m <n—1. Let or be
an r.i. quasinorm on M, (0,1). If or satisfies the subadditivity property

(3.28) or(f +9) < or(f) + or(9), f.g€M(0,1),

then so will the op defined by (3.26) and (3.27). In any case, op satisfies the
L*-embedding property (3.3) whenn >3 and 2 <m <n — 1.

Remark 3.16. The example or(f) = o1(f), f € MM, (0,1), for which (3.26)
becomes op(f) = o1(t7 f(t)), shows op need not satisfy (3.3).
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Now we turn our attention to the construction of the optimal range norm when
the domain quasinorm is given.

Theorem 3.17. Suppose n € Z,, with n > 2. Suppose op 1S a quasinorm on
M, (0,1) such that

1

(3.29) | k< con(h). em0.1)
0

Then, the functional o defined by

a(g) = dp(trg™(t))

is an r.i. norm on M, (0,1). Moreover; (3.14) holds for or = o', o’ being the
largest such r.i. range norm.

For the higher-order embedding, we have

Theorem 3.18. Suppose m,n € Zy, withn > 3 and 2 < m < n — 1. Suppose
0 is a quasinorm on M, (0,1) for which the L' imbedding (3.3) holds. Then, the
functional o defined at g € 9, (0,1) by

o(g) = ¢ (/}tlg**((‘S)S%1 dS)

is an r.i. norm on M (0,1). Moreover, if o is rearrangement-invariant, then (3.12)
holds for or = o' and op = o, o’ being the largest such r.i. range norm.

Remark 3.19. The results concerning the optimal domain norm when the range
norm is given are quite satisfactory, because they provide an explicit construction
of the gop. On the other hand, the results concerning the optimal range when
the domain is given, are rather implicit as they require two duality steps. In
particular examples, the characterization of the required dual norms can be quite
difficult. In some cases however a precise characterization is available. We shall
first demonstrate the results with some examples.

Examples.

Theorem 3.20 (Optimal range). (i) Let 1 < p < n. Then, the Lorentz space
L7557 is the smallest r.i. space which renders the embedding

Wo(L7) = L5

true.
(ii) The Lorentz—Zygmund space L™~ is the smallest r.i. space which renders
the embedding

Wol(Ln) SN Loo,n;fl

true.
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Let us note that Theorem 3.20 does not contradict Theorem 2.1, as W,,(Q) is
not an r.i. space. (Of course it is obviously a rearrangement-invariant structure
but it is not linear as pointed out in Theorem 2.2 (iv).)

Theorem 3.21 (Optimal domain). (i) Letn’ < p < co. Then, the Lorentz space
L5 ? s the largest r.i. space which renders the embedding
W (Ln4P) — LP
true.
(i) The space L' is the largest r.i. space which renders the embedding
Wy (L') — L™
true.
(iii) The space L™ is the largest r.i. space which renders the embedding
Wy (L") — L™

true.

4. OPTIMALITY OF SOBOLEV EMBEDDINGS IN THE CONTEXT OF ORLICZ
SPACES

Having the material of Chapter 3, we are in a position to prove the results
concerning Orlicz spaces, and, thereby, to answer Problem 1.4. In particular, we
give a detailed constructive proof of Theorem 1.5, mentioned in the introduction.
This gives an answer to the second question in Problem 1.4.

Next, in order to answer the first one, we turn our attention to the sub-limiting
case. Our main results in this direction are the following two theorems.

Theorem 4.1. Let A be a Young function. Let p4 be the corresponding Orlicz
norm on MM, (0,1). Let or be an r.i. norm on M, (0,1) such that

(4.1) or(|Vul*) S oa(u®) for every u € L4().

Assume further that

1 1
(4.2) AT(l) =~ t"gR (X((Lt)) .

t
Then 04(S2) is the smallest Orlicz norm such that (4.1) holds.

Theorem 4.2. Let A be a Young function. Let o4 be the corresponding Orlicz
norm on 9, (0,1). Let or be an r.i. norm on M, (0,1) such that

(4.3) or(|V™u]*) S 0a(u”) for every u € L4(2).

Assume that

(4.4 o~ e (@55 1e 0.

Then 04 is the smallest Orlicz norm such that (4.3) holds.
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Let us now overview the situation of optimality of domain and range norms
of Sobolev inequality in the context of Orlicz spaces. Theorem 1.3 of A. Cianchi
shows that, given a fixed Orlicz domain space, there always exists the optimal
Orlicz range space. On the other hand, the situation described in Theorem 1.5
shows that for a given Orlicz range space, the optimal Orlicz domain space need
not necessarily exist. Still, this situation is not universal: consider the simplest
possible example of Orlicz range space, i.e. a Lebesgue space L1(Q2), n’ < ¢ < oc.
Then, as we have shown, the optimal Orlicz domain space is the Lebesgue space
L™ (Q) with
(4.5) r="1

qg+n

A natural question now occurs: what governs the difference between the case
represented by the range space exp L™ () (for which there is no optimal Orlicz
domain space) and the case represented by the range space L(Q), ¢ € (n/,0)
(for which the optimal Orlicz domain space is readily found)?

Certain insight into this problem is achieved when the optimal fundamental
function is calculated and the corresponding Orlicz space is considered. Let us
outline the principal ideas of our method:

<q.

(i) we start with a given Orlicz norm gy ;

(ii) we find the corresponding optimal rearrangement-invariant domain norm op;

(iii) we calculate its fundamental function ¢ = p,;

(iv) we find the (unique) Orlicz norm whose fundamental function is equivalent
to ¢,, and denote this norm by op;

(v) we find out whether or not pp satisfies, together with g4, the Sobolev in-
equality;

(vi) if so, then gpp is the optimal Orlicz domain norm for the given range norm
04 in the Sobolev inequality.

5. OPTIMAL PAIRS OF LORENTZ-KARAMATA (QUASINORMS

In order to obtain a wide variety of examples interesting from the practical
point of view we shall now turn our attention to a fairly large class of function
spaces. To this end we shall introduce a new class of function spaces generated
by functionals which we call Lorentz-Karamata quasinorms (these are classical
Lorentz quasinorms involving the slowly-varying functions of Karamata). Let us
note that all the function norms which have occurred so far in particular examples
fall into this category.

Definition 5.1. A positive function b is said to be slowly varying (s.v.) on
(1,00), in the sense of Karamata, if for each £ > 0, t°b(¢) is equivalent to an in-
creasing function and ¢~¢b(t) is equivalent to a decreasing function.

Examples 5.2. The following functions are slowly varying on (1, 00):
b(t) = (e + log1)* (log(e + logt))”, o, B € R;
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b(t) = exp(/logt).
Remarks 5.3. Suppose that b is slowly varying on (1, 00). Then
(i) b" is slowly varying on (1, 00) for all r € R;
(ii) ftl_l s7'b(s™1) ds is slowly varying on (1, c0) and (see [40, Chapter 2, p. 186])

b(t
(5.1) lim — _1( ) —— =0
—o [~ s7b(s71) ds

bl

e . b(ct) o
(iii) tliglo o — | forall ¢ > 0.
(iv) In particular, both b(t~1)~! and 29" (when ¢ < o) are slowly
Jot sTib(s~)ads
varying on (1, c0) whenever b is.
Definition 5.4. Let p,q € (0,00] and let b be a slowly-varying function on

(1,00). Assume that Ht_%b(t_l)HLq(OJ_) < oo when p = co. Then the Lorentz—
Karamata (L-K) space LP%® = [P% is the collection of all measurable f such
that || f]| pr.a» < 00, where

11 .
(5.2) 1/l zpao = [[E2750() f*(O) | ogo,1)-

Remark 5.5. (i) The functional || f||zr.es is @ norm if p > g or if p = ¢ and b is
non-decreasing on (1, 00). Moreover, it is equivalent to the r.i. norm

| Al = £ 362 £ ()l acoy
if and only if p > 1.

We shall now present the main results on optimality of pairs of Lorentz—
Karamata spaces in the Sobolev embeddings ([5, Section 5]).

Theorem 5.6. Fiz p and q with 1 < p,q < co. Suppose b is a slowly varying
1 1
function on (1,00), which is such that ¢(t) =t~ ab(t™1) satisfies 0,(¢) < oo. Let

_ Jog(ef")  when p>gq,
orlf) {Qq(cbf**) when p<gq,

—QR(/f 5n1d5>, neZ,, n>2.

Then, or and op are optimal in (3.14) as an r.i. norm and a Banach function
norm, respectively.

and

We remark that op is equivalent to an r.i. norm by Remark 5.5 and op is
a Banach function norm by Theorems 3.14 and 3.15.

In view of Theorem 3.14, only the optimality of oz needs to be shown. To this
end, we prove

0r(9) = op(tn g™ (1)),
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and then invoke Theorem 3.17 with o = ¢}, and o = op.
For the higher-order case, we have

Theorem 5.7. Let p, q, ¢ and or be as in Theorem 5.6. Given f € M (0,1),

define
1
N=on( [ roestas).

Then, or and op are r.i. norms which are optimal in (3.12) if 1 < p’ < Z;

otherwise, op is optimal but or is not except, possibly, when p' = ™, q = oo and

b is bounded away from zero.

The proof is based on the following idea: to prove that gg is optimal for its
optimal gp, it is enough to show that it is optimal for some norm. Such a norm
is constructed. To this end, a rather long and deep argument is used, involv-
ing weighted inequalities, known duality relations, calculations on fundamental
functions, and last but not least the following new duality theorem for special
function norms, which is of independent interest.

Theorem 5.8. Letl < p < oo and suppose the weight ¢ on (0,1) satisfies fo P dt <
o0o. Assume, further, that

(5.3) /0 o) dt < Cr7 (1 N /rl cbgfo)p

Then, the r.i. norm 4, has dual norm

d(9) = oy (¥g"), g€ M (0,1),

1 P 1—p/
(1+/ %i;dy) ], 0<s<1.

Remark 5.9. The simplest expression equivalent to op(f) in Theorem 5.6 is
(i) o <t ab(t ft Sn_1d8> when p’ = 1;
(ii) o, (tz Pab(t ) f(t)) when p/ > 1.
Likewise, the simplest expression equivalent to op(f) in Theorem 5.7 is
i) o (t ab(t ft _1ds> when p' = 1;
(ii) o, (tn o %b(t_l)f*(t)> when 1 < p/ < Z;
(if) oy (¢ 7b(t)(Pf)(1))  when p! = 2, 0, (177b(t™)) = 00, and 4b(t )

is non-increasing;
1
(iv) o1(f) when p' > = or p’ = % and g, (t*Eb(t*1)> < 00.

=00 and

), 0<r<l.

where

(5.4) sy =
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We observe that in either case the expression in (i) cannot be replaced by the
one in (ii) when p’ =1, since

_1 1 m m_ 1 _
2 (t () / X(o.)(5)s% L ds ) < Coy (157500 X0 (1)) -
t
0 < a < 1, implies
/ ()1 dt < Cb(a™")?, O0<a<l,
0

which contradicts (5.1).
Again, the expression in (iii) cannot be replaced by

o, (#00() £(1))

Examples. We present here examples of norms, op and og, which, in view of

Theorems 5.6, 5.7 and Theorem 3.12 are optimal in (3.13) or (3.14). Once again,

m,n€Zy,n>21<m<n-—1,and b is a slowly varying function on (1, c0).
1. Let 1 <g < -,

oot = an (1% [ 76055 ds) = 057 = ()

and
or(f) = o (t_%f*(t)) :
Then, or and op are an optimal pair in (3.12).

2. Suppose that op(f) = g%(f) and that gr = 0co,;1 is the norm of Hansson
and Brézis—Wainger:

_m e\t %
(5.5 o) = 2 (175 (1085) " 1)
Then, o and pp are r.i. norms satisfying (3.12); moreover, by Theorems 3.17, 3.17

and 5.8, or is optimal, though ¢p is not, as it can be replaced by the essentially
smaller norm (cf. [6, Theorem 9.2])

9(f)=inf{g (fo) + o (t”“” (log %) " lfl*(t)): f=fo+f1}-

When m > 1, the gg in (5.5) and ¢p, defined by

() )
<10g %) B /t Cpe(s)sEt ds)

m

n
m

33

op(f) = o= (t

( -

33

~ 0

3
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are optimal in (3.12). As for the case m = 1, the r.i. norm gz and the norm

op(f) = on ( log / f(s )

are optimal in (3.14) and also in (3.13) .
More generally, the r.i. norms

on(f) = (t bt / (s )
<oz () [ s ds)

or(f) = o= (tb(t™1) f*(1))
optimal in (3.12) if n > 3 and 2 < m < n — 1, while this gog (with m = 1) and

the norm
1 1 1
op(f) = on (t_ﬁb(t_l)/ f(s)sn! ds)

are optimal in (3.14) and also in (3.13). When b(t) = [1 +log (1 + logt)] ™", these
results extend and give the best possible refinement of double-exponential type
results of [22]; when b(t) = (log(et))™®, a > 0, they do the same for the inequality
in [23].

and

3. Take
1 m 1 m
oo () = g () [ 706157 ds) ~ 0 (b(tl) [ rsas)
t t
and
or(f) = 00 (b(t () =~ 0s ( D)
to get an optimal pair of r.i. norms in (3.12 leen b(t) = 1 and m = 1,
this yields the pair op(f) = o1 (tn Lt ) and or(f) = 0oo(f), obtained in [3,

Theorem 5.3] by different means.
4. Finally, set

on(f) = o (—fb / £(s ) o1 (bt £ (1)
and

(5.6) or(f) = o1 (bt (1))

When m = 1, these norms are optimal in (3.14), but only gg is rearrangement-
invariant, unless b(t) ~ 1, in which case op(f) =~ 01(f) and the pair is optimal
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n (3.13). When n >3 and 2 <m <n — 1, with gg as in (5.6) and

on(f) = o (—vb /f** )
~ o1 (b(t7)™ (1))

we have op, but not or, optimal in (3.12). To obtain optimal pairs, in which the
domain norms, gp, have indices equal to 1 we must require that b(¢) = 1 or that
b increases to infinity, with ib(t_l)_1 non-increasing, then set

op(f) = 0w (tlfb / (s ) R oo (b(tl)/ot F5(s) ds)

0r(f) = 00 (£ b(E) (1)) -

The Optimal Domain in the Limiting Case. A particular case of the norm
in (5.5) finishes the analysis of the optimality of the limiting case of Sobolev
inequality initiated by the domain norm p = p,,. We can reformulate the result in
terms of function spaces in the following way: For the domain space L"(f2), the
smallest possible rearrangement-invariant range space is the Lorentz-Zygmund
space L°>™~1(Q), that is, the space of Brézis and Wainger. However, then,
L™(Q) is not optimal (the largest possible) rearrangement-invariant domain space
for the Sobolev embedding into L>™~1(Q2). This is already known to us from
Theorem 1.2. By Theorem 3.14, the optimal rearrangement-invariant domain
space, denoted by X = X (), say, is normed by

(5.7 1llx = g ( | s ds).

It was shown in [11, Section 8| that the space X is still essentially larger than
(L" + L”’“_%), obtained in [6] (Theorem 1.2). It turns out that X is a new type

of a very important function space. In [11, Section 8|, a detailed study of X was
carried out. The following theorem describes its relations to familiar function
spaces.

and

Theorem 5.10. Let the space X be defined by (5.7). Then X is is an r.i. space.
Moreover,

(i) the fundamental function ¢x of X satisfies

1 e\
(5.8) ox(t) ~ th (1og (;)> e (0,1);
(ii) the following relations hold:
(5.9) <L” + anl;fi) — X,
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(5.10) X C (W;i/ nN L"’l;r?’) ;

a>1

and both the embedding (5.9) and the inclusion (5.10) are strict;
(i) X is incomparable to every space from the scale of Lorentz-Zygmund spaces

{L"’”‘#} , 1T €(l,n);
(iv) X is incomparable to every space from the scale of Orlicz spaces

{Lmm=w ), a € (0,1).

The proof of this result is based on rather fine calculations involving usual tools
for rearrangements such as the Hardy’s lemma or the inequality of Hardy, Lit-
tlewood and Pdlya. Also some recent results on embeddings of various weighted
function spaces are useful.

6. SUPREMUM OPERATORS, DUALITY AND OPTIMALITY

Let us summarize some of the steps we have taken so far. For the sake of
simplicity, we restrict ourselves to the case m = 1. First, we have reduced
a Sobolev embedding to the boundedness of a weighted integral operator of
Hardy type. This result enabled us to construct the optimal domain norm
when the range norm is given. Our key concern about this construction is the
rather unpleasant fact that, in general, op from (3.26) does not have to be nec-
essarily an r.i. norm. First, it does not have to be rearrangement-invariant,
and second, (Ag) (With 0= QD) might not be true. To illustrate this situa-
tion we consider or(f fo t)dt. Then, of course, op is an r.i. norm but

fo t dt, Wthh is not rearrangement-invariant and, moreover, (Ag)
(Wlth 0= 0p) clearly does not hold.
In view of our reduction theorem, a natural candidate for the optimal r.i. norm
(for m = 1) is the one given at f € M, (0,1) by

(6.1) oot = on ([ 1615 as).

This functional immediately removes one of the hurdles: it is obviously rearrangement-
invariant. However, it creates new dangers instead. First, it does not necessarily
have to be a norm, and, second, even worse, the Sobolev inequality itself might

no longer be true. Indeed, as we know from the reduction theorem, for op defined

by (6.1), the Sobolev inequality is equivalent to the estimate

(6.2) QR(/f )<C’QR</f s) for all £ > 0.
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This however might be false, as can be demonstrated with the example or(f) =
fo t) dt. Then, (6.2) turns into

1 1
/ fytrdt < C / Fr(t)tn dt,
0 0

and this is certainly not true for all f € M, (0,1) (take for example f(t) =

(1 —t)~1). Moreover, op(f fo t)tw dt, which is not equivalent to a norm.
We are thus motivated to seek condltlons which imply that op is equivalent to

a norm and that (6.2) is satisfied. One such a sufficient condition is the estimate

OR (/ (s _1d8) < Cor (/1 f*(s)s%_1 ds) for all f € M, (0,1).

When (6.3) is satisfied, then (Theorem 3.12) (6.2) holds and, moreover, since f**
is sub- addltlve in f e 9ﬁ+(0, 1), op is a norm. Condition (6.3) is however rather
strong and rules out important cases such as the one obtained from the Lorentz
norm

1
0n(f) = 021 (f) = /0 FOthdt, f e, (0,1),

1 1
* %fld ~ * d
o ([ s tas)~ [
1 1
OR (/t f**(s)«?%_lds) %/0 f*(t)log%dt.

Last, we obtained in Theorems 3.17 and 3.18 formulae solving the symmetric
problem to find an optimal pg when gp is given. Our main concern about these
results is that the optimal range norm g is obtained only in an implicit form,
via its dual norm. It is not always easy to work out the norm pr from the
formula. But, for example, for op(f) = || f||», the optimal range r.i. norm satisfies
0r(g) = op(tn : (9**)(t)). The pr can be now worked out on using [31, Remark on
p. 147]. We get

(6.4) on(f) ~ (/01 <1£gg?)>n%) forall  f €M, (0,1).

The optimal domain norm (we shall call it gp), corresponding to this gg, is

65 aoto)= ([ ([ 55 0a) (0s(5)) ‘ff) gem 1)

This is a new function norm which naturally occurs in the optimality problem,
therefore it is worth of studying. One of the most important challenges is the
characterization of its dual norm.

for which

while
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In [12], we established mild sufficient conditions under which explicit descrip-
tion of the corresponding optimal domain r.i. norm is available. For instance,
we obtain considerably better conditions for the validity of (6.2) and for op be
equivalent to an r.i. norm than (6.3). We also give a very reasonable sufficient
conditions in order that an explicit formula for optimal range r.i. norm is avail-
able.

The key part is played by the operator T given at g € 9, (0,1) and ¢ € (0, 1)
by

(Tg)(t) =t~ sup s g"(s).
t<s<1

This is a “weighted modification” of a particular case of the Hardy-type operator
nmwvolving suprema

(R,9)(t) = sup s=g"(s),
t<s<1
which was for v € (0,n) introduced in [2].

In [12], we introduced the operator J. For a nonnegative function ¢g on (0, 1),
let Jg be the nonnegative non-increasing derivative of the least concave majorant
of the quasi-concave function supy_,, sl=w g*(s). Then it is a simple exercise to
verify that -

t
sup slfig*(s) < / Jg(s)ds < 2 sup 51’%9*(5) for all measurable g.
0<s<t 0 0<s<t

With the help of the operators T and J, we obtain a desired duality formula.

Theorem 6.1. Let pr be an r.i. norm whose dual, o, satisfies, for some C' > 0,
(6.6) dr(Tg) < Cog(g) forall g >0.

(i) Then (6.2) holds.
(ii) Define op by (6.1). Set

a(9) = 0r(J9).
Then,
op(f) ~ o'(f) forall f> 0.
(iii) The functional op defined by (6.1) is an r.i. norm; moreover, it is the

smallest r.1. norm for which the Sobolev inequality holds.

This theorem shows the importance of the supremum operator. In particular,
it is very important to be able to decide whether the condition (6.6) holds, that
is, when the operator 7" is bounded on the dual of pz. To this end we first
characterize the interpolation properties of the operator 7.

Theorem 6.2. (i) T is bounded on L' and also on L™*;
(ii) there is a C' > 0 such that

(Tg)™(t) < CT(g™)(t) for all measurable g and ¢ € (0,1).
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Remarks 6.3. (i) In fact, it is not difficult to show that 7" is bounded on every
space LP, 0 < p < n (in this sense, L' is not really an “endpoint”). Consequently,
T is also bounded on every space L>4, p € (0,n), g € [1, o0].

(ii) Since (T'x(01)) (t) = t~w, and £~ is the extremal function in the unit ball
of L™> T cannot map any rearrangement-invariant space into a space smaller
that L™>. Hence, L™ is a natural interpolation endpoint for the operator 7'
Similarly, since T'g majorizes g* for every g, T' cannot map any r.i. space X into
a smaller space than X. We thus always have T'(X) D (X U L™*) for every
r.i. space X.

(iii) There is one more reason why L™ is the natural endpoint of the scale
of spaces on which 7" is bounded: when ¢ = 0, «, then or = 01, and gp is

thus the L'-norm, which is known to be smallest of all r.i. norms.

As an application of our results we shall now characterize the dual of the norm
from (6.5).

Example 6.4. Let gp be defined by (6.5). Then

n—1

1 2\
Qb’(g) =~ (/ {sup slig*(s)] 7 for all ¢ > 0.
0

0<s<t

In particular, the boundedness of T on L!="1) implies (by Theorem 6.1 (iii))
that ¢p is an r.i. norm.

The boundedness of the operator 12, on fairly general classical Lorentz spaces
was characterized in [2].

Theorem 6.5. Let n € N, v € [0,n), 1 < p < g < o0, and let w,v be nonneg-
ative measurable functions on (0,00) with v satisfying foxv(t) dt < oo for every
x € (0,00). Then there is a positive constant C such that the inequality

([ [mo]voa) RE o [T owwna) ’

holds for all ¢ non-increasing if and only if

(6.7) r (/Orw(t) dt)l/q < C(/Orv(t) dt)l/p

holds for all r € (0, 00).

This characterization can be used to give a sharp pointwise estimate for the
fractional maximal operator

(M, f)(x) = sup |Q|* ! / FW)ldy, ek,
Q> Q

where the supremum is extended over all cubes () C R™ with sides parallel to the
coordinate axes.
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Theorem 6.6. Let n € N and v € [0,n). Then there exists a positive constant
C' depending only on n and v, such that
(6.8) (M, f)*(t) <C sup 7= f™(r),  t€(0,00),

t<T<00
for every f € L. (R"). Inequality (6.8) is sharp in the sense that for every ¢
non-increasing there erists a function f on R™ such that f* = ¢ a.e. on (0, 0)
and
(6.9) (M, f)*(t) = ¢ sup 77 f*(7),  t€(0,00),

t<T<o0
where, again, c s a positive constant which depends only on n and . Moreover,
the expression sup,., .o, 7 [**(7) can be replaced by (t f**(t)+sup,, .o 77 f*(7))
in both (6.8) and (6.9).

Let us recall that such sharp estimates had been known before for other im-
portant integral operators of harmonic analysis such as the Hardy-Littlewood
maximal operator, the Hilbert transform and the Riesz potential, and to obtain
such an estimate for the fractional maximal operator had been an open problem
for long time.

The results of the preceding two theorems were used in [2] to characterize when
the fractional maximal operator is bounded on a classical Lorentz space.

Theorem 6.7. Let n € N, v € [0,n), 1 < p < q < o0, and let w,v be non-
negative and measurable functions on (0,00) with v satisfying fom v(t) dt < oo for
every x € (0,00). Then

( /0°° [(M’*f )*(t)] qw(t) dt) " <C ( /0 i FPo(t) dt) ;

if and only if (6.7) and

([ w0) ([ (- fros)

hold for all r € (0, 00).

/

1/p
v(t) dt) <C

With the help of the techniques described in this section, we can state the main
results concerning full (non-reduced) Sobolev embeddings. The first of them is
the general reduction theorem.

Theorem 6.8. Suppose m,n € Zy, wheren > 2 and 1 < m < n —1. Let o
and op be r.i. norms on M, (0,1). Then there exists a constant C') such that

(6.10) or (u*(t)) < Cop (|D™ul*(t)),  ue CF'(Q),
if and only if there exists a K > 0 for which

(6.11) @([U@bflw)SK@um fem,(01).
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The key ingredients of the proof involve interpolation theory and the properties
of the supremum operators. Next, we characterize the optimal range and the
optimal domain.

Theorem 6.9. Let op be an r.i. norm on M (0,1). Then, the optimal r.i. norm
or such that (6.10) holds for op satisfies

1
612 = [ Foas s [0 -rol0®
QD(S%Q)Sl 0
f €M (0,1), where the operator S» defined at f € M,(0,1) by
(6.13) (S%f) (t)=tnt Sup s1TW A (s), t e (0,1).
<s<t
Theorem 6.10. Let op be an r.i. norm on M, (0,1) such that L,, — Lu-m"t,
Then,
1
(6.14) op(f) == iu;; OR (/ h(s)sn ds) , feMmi(0,1),
~ t

is an r.i. norm on M (0,1) for which

1
ORr ( fs)s= dS) <op(f), feM(0,1);
t
further, op is essentially the smallest such r.i. norm.

The results are demonstrated with plenty of examples, to name just one kind,
let us formulate the results for Orlicz spaces.

Theorem 6.11. Assume that A is a Young function, let op = 04, and assume
that

(6.15) S% : LA — LA'

Then, the optimal r.i. norm o such that (6.10) holds, satisfies, for every f €
m-l— (0’ 1)7

616 o= [ P dt+ on (] B ) — £(s)] i),

Theorem 6.12. Assume that A is a Young function and let op = 04. Assume
that there exists a k > 0 such that the complementary function A of A satisfies

(6.17) /:O A(s) ds < il@, t e (1,00).

241

n
t Sm m

Then, the optimal r.i. norm op such that (6.10) holds, satisfies, for every f €
M,.(0,1),

(6.18) on(f) ~ oa ( / () ds) :
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7. SOBOLEV EMBEDDINGS INTO BMO AND VMO, HOLDER, CAMPANATO
AND MORREY SPACES

Finally we shall present results on Sobolev embeddings into spaces with con-
trolled pointwise and integral oscillation.

We start with the space BMO of functions having bounded mean oscillation,
and the space VMO of functions having vanishing mean oscillation.

These spaces proved to be particularly useful in various areas of analysis, es-
pecially harmonic analysis and interpolation theory and the Sobolev embeddings
with these spaces as ranges are quite useful also in the theory of partial differential
equations (see e.g. [19], [18] or [16].

The space BMO has been successfully used as an interpolation substitute for
L*> where L> does not work (for example, in the interpolation of Hilbert trans-
form and related singular integrals).

For the sake of simplicity, we restrict our results to the case when the underlying
domain is a cube in R".

Definition 7.1. Let (Q be a cube in R™. The space BMO(Q) is the class of
integrable functions f on () such that
1
Il = s [ 1f@)  forldo < oc,
Q’CQ|Q| Q'

where for = |Q'|™" [ o /> and the supremum is extended over all subcubes Q" of

Q.
We say that f belongs to VMO(Q), if

(7.1) lim py(s) =0,
where
1
. = — for| dz.
(1.2 et = s o [ 170) = fol e

Remark 7.2. Obviously,
(7.3) L* Cc BMO, VMO c BMO.

Considering the function log |z| near the origin, we can show that L>° # BMO and
VMO # BMO. Moreover, L>*° and VMO are incomparable, as is demonstrated
with the functions sin(log |z|) € L>*\ VMO and +/log|z| € VMO \ L.

The next three theorems give a complete answer to the question of optimal
r.i. domain for L, BMO and VMO (recall that for the latter we already know
the answer) plus another characterizing condition.

Theorem 7.3. The following are equivalent:
(i) Wy (X) = L*;
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(i) I e < 00

(i) X — L™,

Theorem 7.4. The following are equivalent:

() WE(X) = BMO;

s 1 1/n

(i) sup — |7/ X (0,6 (1) x < 00
0<s<1 S

(iif) X e [0,

Theorem 7.5. The following are equivalent:

(i) lim sup p,(s) =0;

5704 ||V x <1

28 : 1 1/n

(i) lim =7 x(0.6) (1) [[x7 = 0;
s—04 S

(iii) X C (L"),

where for a Banach function space X we denote by X, its subspace of those
functions that have in X absolutely continuous norm.

In particular, the optimal range for embedding into BMO is the Lorentz space
L™, Tt is of interest to compare this to the fact that the optimal range for
embedding into L™ is the Lorentz space L™!

Let us finish with the result on optimality of Orlicz domain in the Sobolev
embeddings into such spaces.

Theorem 7.6. Let A be a Young function. Then
t
WE(La) — BMO iff / A(s)ds < Ot
0

and

Wy (La) — L™ iff / A(s)s™ 1 ds < 0.
1

Theorem 7.7. (i) The space L" is the largest Orlicz space L such that W (L) —
L.

(ii) There does not ezist any largest Orlicz space Ly such that Wi(La) —
BMO.
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Now let us turn to general Hélder, Campanato and Morrey spaces.

A classical result due to Morrey states that if p > n, then any function from
WhP(Q) equals a.e. a Hélder continuous function with exponent 1 — 2. Precisely,
the embedding

(7.4) Whe e % a=1-2

n’
holds, where C%%(Q) denotes the space of Holder continuous functions with ex-
ponent « € (0,1] endowed with the seminorm

”fHCO’a = sup |f(l‘) B f(y)|

cyeqQ T —yl®
Ay

More generally, given a continuous function ¢ : (0, 00) — (0, 00), which will be

referred to as an admissible function, one can consider the space C%%(Q) equipped
with the seminorm

|f(x) = f(y)]
7. 0 = VAR = JAI/L
(7.5) I flle ;ggsﬂx—M)

Obviously, C%%(Q) contains uniformly continuous functions if and only if
Jim o(t) = 0.

Holder type spaces are a basic tool in various areas of analysis, including, for
instance, theory of regularity in the calculus of variations and in partial differ-
ential equations. In these and other applications, however, one is often forced
to to work with related function spaces defined in terms of integral, rather than
pointwise, oscillation. These are the spaces of Campanato and Morrey type. In
analogy with (7.5) (see [34]), given an admissible function ¢, the Campanato
space Lg(Q) is defined as the space of all real-valued measurable functions f on
() for which the seminorm

1
up ——
<Q |Qe(1Q7)
is finite, where the supremum is taken over all subcubes @)’ of Q with sides parallel
to those of @ and fo = |Q'|"* [ o f () dy, the mean value of f over (. Similarly,

the Morrey space Ly (Q) is defined as the space of all functions f as above such
that the norm

1fllzg = s f(z) = fol dx
Q Q

1

up ———— x)| dx
@i Jo
is finite. Here, |F| denotes the Lebesgue measure of a measurable set £ C R”".

In the case when ¢(t) = t* with appropriate a € R, the spaces Lg(Q) and
LY (Q) coincide with the classical Campanato and Morrey spaces and will be
denoted simply by LS(Q) and LY(Q), respectively. The importance of Cam-
panato spaces in the theory of regularity stems from the fact that they overlap

Iﬁhy=5
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with Holder spaces. Indeed, a basic result (see for example [26]), tells us that

LC

= (0% if 0 < o < 1. The overlapping of Campanato and Morrey spaces

is also nonempty, since LS = LM if —n < o < 0. In the borderline case when
a =0, L} = L, whereas L = BMO, the space of functions of bounded mean
oscillation over () (see e.g. [26] for a comprehensive exposition of these spaces).
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