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Resumé

¢isel, v némz hledame feseni, a to na okruh vsech celych algebraickych ¢i-
sel v néjakém konecném rozsiteni télesa racionalnich ¢isel. To vSak mé za
nasledek, ze ztracime jednoznacny rozklad na soucin ireducibilnich prvki,
nebot uvazovany okruh uz nemusi byt okruhem s jednozna¢nym rozkladem.
Nastésti vsak jde o Dedekindiiv okruh, takze jeho libovolny nenulovy ideal
lze zapsat jako soucin prvoidealil, a to jednoznacné az na poradi. Diky tomu
lze Casto tvahy provadéné v okruzich s jednozna¢nym rozkladem provést i
zde: misto prvki rozkladame hlavni idealy jimi generované. Problémem vsak
je, ze prejit od soucinu idealt zpét k soucinu prvkia lze jen tehdy, jde-li
o hlavni idealy. Proto je tedy nutné mit pfehled o tom, které z idedlt jsou
hlavni. Faktorizaci pologrupy vsech nenulovych idealti podle podpologrupy
téch hlavnich vznika tzv. grupa tfid ideald, coz je konecnéa grupa. Znalost
jeji struktury v nékterych pripadech umoznuje danou diofantickou rovnici
vytesit. Popsat grupu t¥id ideali nebo alespon jeji fad — pocet tiid ideald —
je vSak obtizny tkol, proto jakékoli i ¢astecné informace jsou cenné.

Ve specidlnim ptipadé, kdy uvazované konecné rozsiteni télesa racional-
nich ¢isel je abelovské, tj. Galoisovo s komutativni Galoisovou grupou, je
mozné v grupé vSech jednotek okruhu celych algebraickych cisel definovat
podgrupu tzv. kruhovych jednotek. Ukazuje se, Ze existuji jisté hluboké sou-
vislosti mezi grupou t¥id idedl na jedné strané a faktorgrupou grupy vsech
jednotek podle podgrupy téch kruhovych na strané druhé.

Témto souvislostem je pravé vénovana tato doktorska disertacni prace,
jejimz jadrem je soubor deviti uverejnénych védeckych praci. Tento soubor
je doplnén komentarem, ktery je psan jako prehledny vyklad o kruhovych jed-
notkach a jejich vyuziti pii zkoumani grupy tfid ideald abelovského télesa.
Proto je mozné praci pouzit jako itvod do problematiky kruhovych jednotek,
jehoz cilem je provést ¢tenare od ivodnich definic az po pokrocilé partie, kdy
se na grupu tfid idedll i na faktorgrupu jednotek divame jako na Galoisovy
moduly a porovnavame anihilatory téchto moduli. Stoji za zminku, Ze tato
velmi abstraktni teorie ma své konkrétni vysledky: Thaineova véta (v diser-
taci uvedena jako Theorem 8a) hraje klicovou roli v neddvném Mihailescové
dilkaze Catalanovy hypotézy, kterd tvrdi, ze 8 a 9 jsou jedind dveé po sobé
jdouci prirozena cisla, ktera jsou obé alespon druhou mocninou néjakého
prirozeného d¢isla.

Posledni kapitola disertace naznacuje dalsi zobecnéni: Starkova hypotéza,
zhruba Teceno, predpoklada, ze jednotky analogické kruhovym jednotkdm by
mély existovat pro abelovské rozsifeni libovolného ¢iselného télesa, nejen té-
lesa racionélnich ¢isel (kromé raciondlnich éisel, kde jde pravé o kruhové



jednotky, jsou zatim znamy jen tzv. eliptické jednotky pro imaginarni kvad-
ratickd télesa). Chinburgova hypotéza pak doplituje v této situaci vztah mezi
grupou tfid idealt a grupou jednotek. Zesilenou variantou této hypotézy je
tzv.  lifted root number conjecture®, jejiz diikaz ve speciadlnim piipadé cyk-
lického rozsifeni racionalnich ¢isel lichého prvociselného stupné, provedeny
pomoci kruhovych jednotek, obsahuje disertace v pfilozeném ¢lanku [8].



Introduction

The dissertation thesis consists of the set of nine published research papers
[1-9] and of the annotation, which is written as an exposition on circular
units. The following text is a reduced variant of this exposition. To make
it more reader-friendly, some examples and statements are included though
they have not been published yet (for example Theorems 3 or 5), so due
to the rules of the Academy of Sciences of the Czech Republic these results
cannot be considered as a part of the thesis. To clearly indicate which results
form the thesis they are numbered by roman numbers (Theorems I to XV)
instead of arabic ones.

In accordance with the rules of the Academy of Sciences of the Czech
Republic, the list of the most important author’s papers having a relation to
the investigated problems is embodied in the thesis. This list can be found on
page ?7; it contains the included papers [1-9] and six other papers [10-15].






Circular units in a cyclotomic field

The easiest situation where one can consider circular (sometimes called
cyclotomic) units is the case of cyclotomic fields. Let n be a positive integer
and ¢, be a primitive nth root of unity, e.g. ¢, = ™", Let Q™ = Q((,) be
the nth cyclotomic field. Since Q" = Q™ for an odd n, we can suppose that
n # 2 (mod 4). We know that the ring of algebraic integers of Q™ is equal
to Z[(,] and Dirichlet’s unit theorem gives the structure of the group £(Q™)
of units of Z[(,]: it is isomorphic to the product of its torsion subgroup with
%gp(n) — 1 copies of Z. Moreover the torsion part £(Q™),,, is the cyclic group
(—1, ) having 2n or n elements depending whether n is odd or even. But
we do not know an explicit system of generators of the whole group F (Q(”)).
Even worse, a computation of these so-called fundamental units for a given
n is intractable already for modest values of n. However, we know plenty of
units of Q™ explicitly, for example, 1 — (¢ € E(Q™) for any integer a such
that n { a and w—"n) is not a prime power. Moreover a’s with ﬁ being a prime

i:gﬁ € E(Q™) for any integers a

power can be also used to produce units:
and b such that (a,n) = (b,n) # n. These units altogether generate the
so-called group of circular units C(Q™) of Q™. It is easy to show that this

group can be defined also by the intersection

C(Q™) = (1~ (s a € Z, nta) N E@QY),

nr

where (...) means generating in the multiplicative group Q™*. Let us men-
tion that —¢, = % € C(QM) and so E(QM),, C C(Q™).

For n = p being an odd prime the group of circular units has been already
studied by E. Kummer who discovered that (in modern language) the index
of C(QW™) in E(QW) is equal to the class number of the maximal real subfield
QG+, 1) of Q). This result has been generalized by W. Sinnott who proved
in [43] that

[E@Q™): C(@™)] =2°- b,

where h&n) is the class number of the maximal real subfield Q((, + ¢, ') of
Q™ and c is given explicitly by the number s of ramified primes in Q™ (i.e.
primes dividing n): c=0for s =1and ¢ =22+ 1— s for s > 1.

If n = p° is a prime power then it is easy to describe a Z-basis of C'(Q™),
i.e. an independent system of generators of C(Q™)/C(Q™),.,, such a basis
is, for example, the set

{i:gi; l<a<?2 (an)=1}



and the index formula can be obtained in this case just by computing the
regulator of this basis (see [46, pp. 143-146]). The general case is much more
complicated since the relations among the generators of the group

Uo=(1-Csa=1...,n—1)

are more and more difficult with the increasing number of prime divisors of

n. It is easy to prove that the torsion part (Up,)ior of U, equals to the cyclic

group (—1,(,) and that the generators of U, satisfy the following relations:
1—C”*a:—C*“(1—C“) foranya=1,...,n—1,

n

1_@?@:1_[ — otitn/m)y foranym|nandanya:1"._’%_1_

=0

Let A, be the free abelian group generated by n — 1 independent generators
€a, Where a = 1,...,n — 1. Let B, be its subgroup of relations of even
distribution, i.e. the subgroup generated by the following elements

€n—a — €q forany a=1,...,n—1,

- Z €a+ti(n/m) for any m|n and any a =1,..., % —1.

So we have a surjective homomorphism A, /B,, — U,/(U, )t If we take
€n—a + €, instead of e,_, — e, in the definition of B,,, we obtain the sub-
group of relations of odd distribution B/. These odd distribution relations
are satisfied by Gauss sums (or by generators of Stickelberger ideal). The
distribution relations are also called Davenport-Hasse relations due to the
paper [25]. These relations appear in number theory also in other connecti-
ons and there is quite a rich literature concerning them. Already in the 60s
H. Hasse (in [33]) and J. Milnor (unpublished, mentioned in [16]) posed a
question whether all relations satisfied by circular numbers 1 — (¢ and by
Gauss sums (modulo its torsional subgroups) belong to the group B, and
B!, respectively. In 1966 in [16] H. Bass gave a proof of this fact for circular
numbers, but in 1972 in [26] V. Ennola showed that Bass overlooked that
there are problems with 2-torsion, for example if n = 105 then the quoti-
ent group A, /B, has a nontrivial 2-torsion. In 1975 K. Yamamoto studied
the problem for Gauss sums in [47] where he finds the correct description
of the torsional part of A, /B] but there is a gap in his proof of the key
lemma. In 1980 C.-G. Schmidt proved that for any positive integer n both
(An/Bp)tor and (A,,/B))tor are elementary 2-groups and found their order
using cohomology of groups. Finally in 1989 in [27] R. Gold and J. Kim used
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the mentioned result of Schmidt to construct a Z-basis of C'(Q™). But their
proof contains a gap concerning 2-torsion. Independently, the author of this
thesis has obtained Z-bases of C(Q(™) and of the Stickelberger ideal of the
n-th cyclotomic field. The summary of these results was published in 1989 in
[10] and the papers containing complete proofs appeared in 1992: Z-bases of
general odd and even distributions, a special case of them being A, /B, and
A,/ B!, are constructed in [1], while [2] uses the results of [1] to give the men-
tioned Z-bases of C'(Q™) and of the Stickelberger ideal. This construction is
described by the following

Theorem I. (|2, Theorem 6.1]) Let n # 2 (mod 4) and let n = p}* ... pl
be the prime decomposition of n (so pi, ..., ps are different primes, 71, ...,
rs are positive integers). We put ¢; = p;* and we define

X =4a€Z;0<a<n, Vie{l,...,s}: (pila = qla)},
N = {ae XU{0}; (a=0o0ra|n),2t#{ke{l,...,s}; a ta}},

Ny = {a€X; Jie{l,....s}: (gifa, 5 =—1 (mod )},

N3 = U{a € X; qrta, (—qk(‘;’a)) > %,
k=1

Vi€ {k+1,...,s}: a= (n,a) (mod g;)},

and finally
M =X — (N UNyUN3).

For any a € X we put

16, if there is i € {1,..., s} such that n|ag;,

1=/
Vg =
1 —¢? otherwise.
Then the set {v,; a € M} forms a Z-basis of C(Q™). ]

This construction is rather technical but the independent construction
of Gold and Kim has similar features, so it seems that there is no easier
description of a Z-basis of C'(Q™). Nevertheless Gold and Kim have been
able to use this ugly basis to obtain a nice result: the groups of circular units
of cyclotomic fields satisfy Galois descent, i.e. if m|n then

C’(Q(m)) _ C’(@(")) NQM™ = C(@(n)>Gal(Q<")/Q(m’)'



Circular units in an abelian field

By an abelian field we have in mind a finite Galois extension of QQ whose
Galois group is abelian. Due to the Kronecker-Weber theorem we know that
any abelian field is a subfield of a cyclotomic field. Let K be an abelian field
and let m be the conductor of K (i.e. Q™ is the smallest cyclotomic field
containing K). Let E(K) be the group of units (of the ring of integers) in K.
In contrast to the case of a cyclotomic field, it is not so clear how to define
the group of circular units of K. In fact we have several possible definitions
giving different groups.

We can use the norm of Q™/K to map the group C(Q™) to E(K).
By this procedure we obtain the so-called group of circular units of K of
conductor level

Ca(K) = (£ Ny (1 = €2); a € Z, mf a) N B(K),

Since C(Q(™) is of finite index in F(Q™), it is clear that Cy(K) is of finite
index in E(K).

But consider a generator Ngwm) i (1 — () of this group in the case when
a and m are not relatively prime. We can suppose that our roots of unity

satisfy (!, = ( for any positive integers s, t. Let r = @ and b = (a‘lm). The
following diagram of fields

Q(m)

KQM

Qw /
N

N/

Q"N
gives that
a (m). KO
Ny (1 = ¢&) = Ny (1 = ) = Nowmygnge (L — ¢)IEFE (1)

which is a power of an explicit number.

Since we want to have a good approximation of E(K) by some explicitly
generated subgroup we want to take as many explicit generators as possible.
Therefore we can use the previous computation to enlarge the group and
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get an equivalent form of Sinnott’s definition of the group of circular units
of K (the fact that the following definition is equivalent to the definition
of Sinnott in [44] is proven in [36, Proposition 1]). Sinnott group Cs(K) of
circular units of K can be defined by the intersection

Cs(K) = (£ Ngewgonx(1 = ¢); 1 <7 |m, (a,r) =1) N E(K). (2)

It is clear that Cq(K) C Cs(K). Sinnott proved in [44] that the index
of C5(K) in E(K) is a multiple of the class number hj. of the maximal
real subfield K N R of K but his formula contains a non-explicit factor,
namely the index of Sinnott’s module U. This module is a submodule of the
rational group ring Q[G], where G = Gal(K/Q) is the Galois group of K,
and is defined by means of inertia subgroups and Frobenius automorphisms of
ramified primes (for the precise definition, see [44, Proposition 2.3]). Sinnott’s
formula reads

[Ljm! 55 - Ql
(K- Q]

(see [44, Theorem 4.1]), where @) € {1,2} is Hasse unit index (so Q = 1 if
K is real), K, is the maximal subfield of K unramified at all finite primes
different from p, e™ = 1% € Q[G] is the idempotent given by the complex
conjugation j € G (so et =1 if K is real), and ( : ) is the generalized index
(defined by means of the absolute value of the determinant of the transition
matrix between bases of the two modules); finally g = 1 —[K : Q] if K is real
but otherwise g is not determined in full. If K is imaginary we only know
that ¢ is an integer between the number of primes p|m with K, imaginary
and the number of them with [K, : Q] even (see [44, Proposition 4.1]).

The author of this thesis has found out that the problem concerning
the unknown g can be overcome by the following slight modification of the
definition (??) of Cs(K). By an adaptation of Sinnott’s computation we
obtain

[E(K): Cs(K)] = hjQ 279 (eTZ|G] : ) (3)

Theorem II. ([5, Theorem|) Let P be the set of all rational primes p
such that p # 3 (mod 4) and \/p € K. Let C§{(K) be defined as

({vp; p € PYU{ENgegonx(l =) L <7 |m, (a,7) = 1}) N E(K).
Then

m K : Q r_ 1
() )] = e @ Lm0 Yoy oy e,
(K : Q]
where ¢’ is the number of primes p|m such that the degree [K), : Q] is even
and ¢" =1 — [K : Q] if K is real and ¢” = 0 if K is imaginary. ]
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The problem to determine the index (etZ[G] : etU) is serious: Sinnott
proved in [44, Proposition 5.1] that this index is an integer which can be
divisible only by primes dividing the degree [K : Q] (he proved even more:
this index can be divisible only by primes dividing the degree [K : K|, where
K is the genus field of K in the narrow sense, and also by 2 if K is imaginary,
see [44, Corollary on p. 225]) but the precise value of this index is known
only for some special cases of K: for example, if K is real with G cyclic
(see [44, Theorem 5.3]); or if K is ramified at most at two finite primes (see
[44, Theorem 5.1]); or if the compositum KK, equals K for each prime p|m,
where K, is the maximal subfield of K unramified at all finite primes different
from p (see [44, Theorem 5.4]); or if K is a compositum of quadratic fields
(see Theorem IV in the next section); or if the degree of K is the square of
an odd prime (see [35]) etc.

We have seen that, similarly to the case of cyclotomic fields, Cs(K) is
again defined by means of explicit generators and its finite index is described
by a formula containing the class number of the maximal real subfield but
we lose one nice property, namely we do not have Galois descent in general.
Since we want to keep the definition for cyclotomic fields as a special case,
there is just one way to get Galois descent, namely to put Cyw(K) = K N
C(QU™). 1t is easy to see that Cs(K) C Cw(K). Since this definition is
mentioned in [46, p. 143], we are calling Cw(K) the Washington group of
circular units of K. But using this definition we lose the other good properties
of circular units: we have neither explicit generators nor a formula for the
index (more precisely, the author is not aware of any published formula for
[E(K) : Cw(K)] which would cover infinitely many abelian fields K with
Cw(K) # Cs(K) - a formula of this kind for a very special class of abelian
fields is given by Proposition 2 below).

The natural question to characterize all abelian fields having the property
Cs(K) = Cw(K) is an open problem. The author of the thesis made a small
step in this direction by enlarging the class of all cyclotomic fields as follows:

Theorem III. (|6, Proposition|) Let K be a compositum of any finite
number of imaginary abelian fields, each of them being ramified at one prime.

There is another definition of circular units which can be found in the
literature (see [28, pp. 152-153]). This approach uses cyclic subfields of K
and goes back to Hasse (see [32, pp. 38, 22|, where slightly different numbers
are considered). This group is smaller but it has the advantage of an easier
Galois module structure. Let £ be the set of all cyclic subfields L # Q of K,
i.e. of all subfields L C K whose Galois group Gal(L/Q) is a nontrivial cyclic
group. Let fr be the conductor of L. The group of circular units of cyclic
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subfields of K is defined by
CCS(K) = <:i: NQ(fL)/L(l - C?L)v Le ['7 a € Z7 (CL, fL) = 1> n E(K)
Since we have

NQ(fL)/L(l - C;LL) = NQ(fL)mK/L(NQ(fL)/@(fL)mK(1 - C?L))7

it is easy to see that Ci(K) C Cg(K).

Example 1. Let us construct all mentioned groups of circular units for
K = Q(\/I_S, \/1_7) It is easy to see that the conductor of K is 13- 17 =
221 and that Cal(Q®Y/Q) = (0.7), where (% = Cip, (fy = Chry (T3 =
(%, and (. = (7. We have Gal(Q®?V/K) = (0%,72), so Gal(K/Q) =
{1,0|k,7|Kk,o7|K}. Let

m = N@<221>/K(1 — Ca21),
N2 = N@(13)/Q(\/ﬁ)(1 - ClS)liT,
1s = Noansgvr (1 — Gr)' 77

Then
OS(K) = <_177]1’7727773>7
CCI(K) = <_17771777§777§>7
CCS(K) = <_1777%an27773>7

8Hence (Cs(K) : Ca(E)] = 48, [Cs(K) : Cuy(K)] = 2 and [Cyy(K) : Cs(K)] =
. ]

The following proposition generalizes Example 1 and computes the index

[E(K) : Cw(K)] for an infinite family of abelian fields.

Proposition 2. Let p = ¢ = 1 (mod 4) be different primes such that
(2) =1 and let K = Q(,/p, /@) Then we have [E(K) : Cw(K)] = h.

Proof. See the thesis. ]
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Circular units in a compositum of quadratic fields

In this chapter we shall suppose that our abelian field K is of a special
form, namely that K is a compositum of a finite number of quadratic fields
such that —1 is not a square of the genus field K of K in the narrow sense.
This condition can be written equivalently as follows: either 2 does not ramify
in K and K = Q(/dy,...,\/d,), where dy, ..., ds with s > 1 are square-free
integers all congruent to 1 modulo 4, or 2 ramifies in K and there is uniquely
determined z € {2, —2} such that K = Q(v/dy, ...,Vds), where di, ..., d
with s > 1 are square-free integers such that d; = 1 (mod 4) or d; = =
(mod 8) for each i € {1,...,s}. In the former case, let

J={p€Z;p=1 (mod4), |p| is a prime ramifying in K},
and, in the latter case, let
J={z}U{peZ;p=1 (mod 4), |p| is a prime ramifying in K}.

For any p € J, let

lp| if pis odd,
n =
e} 8 if pis even.

For any S C J let (by convention, an empty product is 1)

ns=[[ g =" QT =Q")=QG%). Ks=Q(vp;p€5).

peS

It is easy to see that K; = K and that n; is the conductor of K. Let us

define
1 if S =10,

es = { L Nosmo(1—Cs) it S = {ph,
NQS/fS(l_CS) if #5 > 1,

Ks=KNKg and ng = NFS/KS(sg) for any S C J. It is easy to see that

eg and ng are units in Kg and Kg, respectively. For any p € J let o, be
the non-trivial automorphism in Gal(K /K (). Then G = Gal(K,;/Q)
can be considered as a (multiplicative) vector space over Fy with Fo-basis
{opip € J}.

Let us denote the maximal real subfield of K by K. Let

X={¢cc @; £(o) =1forall 0 € Gal(K ;/K ™)},
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where G is the character group of GG. Then X can be viewed also as the group
of all Dirichlet characters corresponding to K*. For any y € X let

Sy = {p € J; x(o,) = —1}.

Let W be the group of roots of unity in K. It is easy to see that the group
generated by W and by

{ng; SCJ,oeG}

coincides with the group C{(K) defined above in Theorem II.
Theorem IV. ([4, Theorem 1 and Proposition 1]) Let

B ={ns;xeX, x#1}.
Then B is a basis of C{(K'). Moreover

2+ C4()] = (HX L) o e

x7#1
and the index of Sinnott module (cf. (?7))

(eTZ[G) 1 et U) = [KT: Q 2 TT[K : Ks .

x€X

L]

Theorem IV shows a way to get a divisibility relation for the class number
— it is enough to prove a divisibility statement for the index [E : C{(K)].

Theorem V. ([4, Theorem 2]) Let us denote n = #.J and 2! = [K : Q].
If K is real then l l
27l | B oy(i),

and if K is imaginary then
02 —1n=(2) | (B O4(K)).

L]

Theorems IV and V can give a result concerning divisibility A" by a high
power of 2 as the following special case shows.

Corollary VI. ([4, Example]) Let us suppose k = K; and
#{peJ;p<0}>1

15



Let us denote n = #.J. Then

92" 2—n—(3)~1 | Bt

L]

P. E. Conner and J. Hurrelbrink in their book [22] characterize the parity
of the class number of any biquadratic field up to the following cases:

® Q(y/p,/q), where p and q are different primes, p=¢ =1 (mod 4), the
Legendre symbol (§> =1;

o Q(/p, v/2), where p is a prime, p =1 (mod 8).

The problem of characterizing fields with an even class number among these
fields is equivalent to the problem of characterizing fields Q(/pg) (in the
first case) and Q(1/2p) (in the second case) with a class number divisible
by 4 (e.g., see [22, the remarks following (21.5) and (19.8)]). Theorem IV
made possible to obtain the following criterions by means of a careful study
of square roots of circular units.

Theorem VII. ([3, Theorem 1]) Let p and ¢ be different primes such
that p=¢ =1 (mod 4). Let h and h; be the class numbers of k = Q(,/p, \/4)
and k; = Q(,/pq), respectively, and let e be the norm of the fundamental
unit of k.

1. If (%’) = —1, then h is odd, h; =2 (mod 4) and e = —1.

2. Let us suppose (’é) = 1 and fix u,v € Z satisfying u?> = p (mod ¢) and

v? = ¢ (mod p). Then the following assertions hold true:

e=—1). ]

Theorem VIII. ([3, Theorem 2]) Let p be a prime such that p = 1
(mod 4). Let h and hy be the class numbers of k = Q(,/p, v2) and k; =
Q(v/2p), respectively, and let e be the norm of the fundamental unit of k;.

1. If p="5 (mod 8), then A is odd, hy =2 (mod 4) and e = —1.

2. Let us suppose p = 1 (mod 8) and fix v € Z satisfying v* = 2 (mod p).
Then the following assertions hold true:
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(a) if (%) 4 (=1)", then h is 0odd, hy = 2 (mod 4) and e = 1;

(b) if (%) = —1and p=9 (mod 16), then h is even, hy =4 (mod 8)
and e = —1;

(c) if (¢) =1and p=1 (mod 16), then & is even and 4|h; (resp. 8|

whenever e = —1). ]

Theorems VII and VIII have the following consequences.

Corollary IX. ([3, Corollary 1]) Let p and ¢ be different primes such
that p = ¢ = 1 (mod 4) and (g) = 1. Let us write p = a2 + 0? and ¢ =
c? + d?, where a,c are odd and b,d are even. Then the class number h of
k = Q(\/p, /q) is even if and only if

(22 = (-7

L]

Corollary X. ([3, Corollary 2]) Let p be a prime such that p = 1
(mod 8). Let us write p = a® + b%, where a is odd and b is even. Then
the class number h of k = Q(\/p, v2) is even if and only if 16|p — 1 + 2b. []

Corollary XI. ([3, Corollary 3]) Let p be a prime. If p = 1 (mod 16),
then p can be written in the form p = 2% + 64y? with x,y € Z if and only if
p can be written in the form p = r? + 32s% with 7,s € Z. If p=9 (mod 16),
then p can be written in the form p = 2% + 64y? with z,y € Z if and only if
p cannot be written in the form p = 72 + 32s? with r, s € Z. M

The previous results were a motivation for the following modification of
the problem: consider fields of the same odd prime degree instead of quadratic
fields. This change makes things much more difficult, nevertheless we have
covered in [7] a particular case — the compositum of such fields each of them
being ramified at exactly one prime.

Let p be an odd prime. Let pq,...,ps be different primes, all congruent
to 1 modulo p. For each i =1, ..., s let K; be the abelian field of conductor
p; and degree [K; : Q] = p. Let us consider the compositum K = [[_, K;.
Then K is real and Sinnott’s formula gives

[E(K) : Cs(K)] = hg - 27" 7%,

A careful estimate of the dimension of vector space F(K)/(E(K)PCs(K))
over [, gives the following

Theorem XII. ([7, Théoreme 3.2]) The class number hj of K is divisible
by p23—52+s—2. D
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Let us notice that this problem has been attacked by different methods,
too. In [23] G. Cornell proved p” *~! | hy and in [24] G. Cornell and M. Ro-
sen proved p**=3)/2 | hy. Theorem XII is stronger than these results if s = 5
and p<T7orifs=6and p<5orifs=7,809,10 and p = 3.

A comparison of different groups of circular units in an abelian
field

This section is devoted to a comparison of the groups of circular units
defined above for a general case of an abelian field. Let K be an abelian field
of conductor m. We have seen that

Cw(K)
Cs(K)
/ \
Ca(K) Ces(K)

and Example 1 shows that there is no inclusion between Cy(K) and Ce(K)
in general. Though we are not able to compute the precise values of indi-
ces between these four groups of circular units, we derive at least partial
information, namely we show which prime could be a divisor of these indices.

Using the identity (?7?) it is easy to see that for any n € Cy(K) we have
@Kl ¢ Cg(K). Therefore if a prime [ divides the index [Cs(K) : Co(K)]
then | [Q(™): K] = £

Theorem 3. Let K be the genus field of K in the narrow “sense. Let [ be
an odd prime dividing the index [Cw(K) : Cs(K)]. Then ! | [K : K].

Proof. See the thesis. ]

Corollary 4. If [ is an odd prime dividing the index [Cy(K) : Cs(K)]
then [ | [K : Q].

Proof. See the thesis. ]

Theorem 5. Let [ be a prime dividing the index [Cs(K) : Ces(K)]. Then
K - Q)

Proof. See the thesis. ]
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Annihilators of the class group of a real abelian field

Let K be a real abelian field, p be an odd prime such that p 1 [K : Q]
and G = Gal(K/Q). Sinnott’s index formula (??) shows that there are some
similarities between two finite groups: namely the class group CI(K) of K
and the quotient group E(K)/Cs(K). More precisely, (??) gives that the p-
Sylow subgroups of the mentioned groups are of the same order: |CI(K),| =
|(E(K)/Cs(K)),|. But this result has been obtained via the analytical class
number formula, so it is not clear whether these two groups have simi-
lar algebraic properties. Since G acts on these groups, both Cl(K )p and
(E(K)/Cs(K)), are Z,|G]-modules. But they are not isomorphic in gene-
ral (even as groups), as we can see in the following

Example 6. If K = Q(v/62501) and p = 3 then we have Cl(K) =

(Z/3Z)? while (E(K)/Cs(K)), = 7,/97. "
Corollary 4 shows that (E(K)/Cs(K)), = (E(K)/Cw(K)),, Theorem 5
gives that (E(K)/Cs(K)), = (E(K)/Ces(K))p, so it is not important which
of these three groups of circular units we are considering.
A common algebraic property of CI(K), and (E(K)/Cs(K)), has been
formulated by G. Gras in his

Conjecture 7. Let K be a real abelian field, p be an odd prime such
that p { [K : Q]. Then the Z,|G]-modules CI(K), and (E(K)/Ces(K)), have
isomorphic Jordan-Holder series. ]

An important step in this direction has been made by R. Greenberg who
proved in [28] in 1977 that the Main Conjecture of Iwasawa theory implies
Conjecture 7. Therefore the proof of Main Conjecture, given by B. Mazur
and A. Wiles in [37] in 1984, is also a proof of Conjecture 7. These deep
results has been obtained by extremely difficult techniques from algebraic
geometry.

An astonishing turnaround appeared in 1988 when F. Thaine gave in [45]
a very much simpler proof of the following corollary of Conjecture 7:

Theorem 8a. ([45, Theorem 3|) Let K be a real abelian field, p be an
odd prime such that p { [K : Q. If § € Z,[G] annihilates (E(K)/Cs(K)),
then ¢ annihilates CI(K),, too. ]

More precisely, Thaine proved more since his theorem covers also the case
of p=2:

Theorem 8b. ([45, Theorem 3|) Let K be a real abelian field of odd
degree [K : Q). If € Zy|G] annihilates (E(K)/Cs(K))2 then 20 annihilates
C(K),. (]
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A nice exposition of Thaine’s proof of Theorems 8 can be found in [46,
§15.2]. (Attention: Washington uses the group C(K) instead of Cg(K) here,
so [46, Theorem 15.2] is weaker than Theorems 8 since, as Example 1 shows,
(E(K)/Cs(K)), is only a quotient group of (E(K)/Cu(K)), in general. But
this minor imperfection can be easily repaired: it is not difficult to modify
the proof of [46, Lemma 15.3] to cover the case § € Cs(K) instead of the
used special case § € Cq(K).)

Thaine’s method has been generalized by K. Rubin in [39], where he con-
siders any abelian extension of number fields (instead of an abelian extension
of Q) and any prime p (allowing p to divide the degree of the extension). To
make the exposition easier we state his results only for the special case of a
real abelian field K:

Let S be the set of all odd primes which split completely in K. For
any ¢ € S, let K, = K((, + C;l) and let C(q) be the set of all ¢ € K*
such that there exists n € F(K,) which satisfies the congruence n = &2
(mod (1—¢g)(1—¢, ")) and whose norm Ny, k(1) = 1. The group of Rubin’s
special numbers of K is defined as

C={ee€ K*; e €C(q) for almost all ¢ € S}.

Let N be a power of a prime p, large enough to kill C/(K),, and let V' be
a finitely generated submodule of Z[G]-module K*/(K*)N. Let a : V —
(Z/NZ)|G] be a Z[|G]-module homomorphism. Let H denote the Hilbert p-
class field of K, i.e., H is the maximal unramified abelian p-extension of K.
Then the Artin map gives an isomorphism of Z[G]-modules Gal(H/K) and
Cl(K),, where G acts on Gal(H/K) via conjugation. Let H' = H N K((y).

In [39] Rubin proves
Theorem 9. «(¢) annihilates Gal(H/H') for any ¢ € C. ]

This theorem does not give an annihilator of CI(K), = Gal(H/K) but
only an annihilator of its submodule Gal(H/H'). But we have control on
their quotient Gal(H'/K), because H' can be computed without knowledge
of H: H' is the maximal subextension of K ((y)/K unramified over K. For
example, if p is not ramified in K then we have H' = K. Concerning Rubin’s
special numbers: we have Cs(K) C C but, in general, Cyw(K) Z C.

Another important step further has been made by V. Kolyvagin who
discovered how Thaine’s method can be strengthened and introduced what
he called “Euler systems.” Roughly speaking, Thaine’s method is just the
first step in Kolyvagin’s inductive procedure and the advantage of an Euler
system is that it allows to bound not only the exponents of the eigenspaces
of CI(K), but also to bound their orders, so it gives not only a proof of
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Theorems 8 but also a proof of Conjecture 7. A very nice introduction to
Euler systems is [40], where the Main Conjecture for the pth cyclotomic field
Q™ is proved. The Main Conjecture for all abelian fields including the case
p = 2 was proven by C. Greither using these techniques in [29]. The recent
monograph [41] of Rubin on Euler systems is written from a more general
point of view and is meant for a more advanced reader.

Theorems 8 cover only the case of a prime p which does not divide the
degree of the field K. The primes dividing the degree are covered by Theo-
rem 9 but the input of Theorem 9 is not an annihilator of a quotient of F(K)
but a Z|G]-module homomorphism «. Therefore natural questions appear for
a prime p which divides the degree: how can the annihilators of CI(K),, and
annihilators of (E(K)/Cs(K)), be compared? Moreover, in general, these
two modules are not of the same order, so can one change them to get some
interesting modules that have the same order? These questions were a star-
ting point of joint research with C. Greither. In [9] we studied the easiest
possible case of this situation, which is described in the rest of this chapter.

Let p be an odd prime and [ = p”* be its power. Let K be an abelian field
of degree [K : Q] = [ with cyclic Galois group G = Gal(K/Q). We want to
study the p-Sylow subgroup Cl(K)p of the class group of K. Let py,...,ps be
all primes which ramify in K/Q. We assume the following

Assumption 10. Each p; ramifies totally and tamely in K/Q and s > 1.

In fact, the assumption s > 1 is quite natural since CI(K),, is trivial if s =
1. The tameness of ramification is assumed just to make things notationally
easier, for example it implies that p; = -+ = p, = 1 (mod [) and that
m = pp...ps is the conductor of K, but this assumption can be removed.
The essential part of Assumption 10 is that each ramifying prime ramifies
totally.

For each i =1,...,s, let K; be the unique subfield of the p;th cyclotomic
field Q) of degree [K; : Q] = I. Then the genus field of K is K = [[,_, Ki.
Let us choose and fix a generator ¢ of G and for each ¢t = 1,...,s let o; €
Gal(K /Q) be determined by the conditions o;|x = o and o;|g, = 1 for each
J # i. We define an s x s matrix A = (a;;) over Z/IZ as follows: if i # j then
0;-“" |k, is the Frobenius automorphism of p; on K; and the main diagonal is
determined by the condition that A has zero row sums, i.e. a; = — > ot Wi

Assumption 10 implies that Cs(K) = Ces(K) is the Z[G]-module (—n)¢q
generated by —7, where 7 = Ng,,/x(1 — (). Sinnott’s index formula (77)
gives [E(K) : Cs(K)] = 7 hg since (Z[G] : U) = 1 due to the cyclicity of K
(see [44, Theorem 5.3]). This implies that  divides the class number hx but
genus theory gives even more: [°~|hg. Using class field theory, this can be
seen as follows: let H be the Hilbert p-class field of K so Gal(H/K) = Cl(K),
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via Artin map. Since the genus field K is the maximal unramified extension
of K which is abelian over Q and in our case it is a p-extension of K, we have
K C H, which means I°"' = [K : K| | [H : K| = ICI(K),|, the pth part of
hg. For any field L such that K C L C H we have that L is abelian over Q
if and only if G acts trivially on Gal(L/K') which is the case if and only if o
acts trivially on Gal(L/K). Therefore Gal(H/K) is the minimal subgroup of
Gal(H/K') whose quotient in Gal(H/K) has trivial action of o, which means
Gal(H/K) = (0 — 1) Gal(H/K) = (0 — 1)C(K),. So we call (¢ — 1)CI(K),
the non-genus part of C/(K),,. Having a good understanding for Gal(K/K),
it is precisely (o — 1)CI(K),, which we want to study.

If s > 2 then the divisibility relation I !|hx = [ - [E(K) : Cs(K)] means
that there are units in F(K), not belonging to Cs(K'), whose pth power is in
Cs(K). In [9], we have searched for such units in

(1-¢r;a€Z, mtayN kK

and proved

Theorem XIII. (|9, Theorem 1]) There is ¢ € K* which is a unit outside
of {p1,...,ps} and satisfies

s— 5 _1\s—14.
ST =y and Ngggle) = [0,
=1

where 0 < A; < [ is a lift of the (4,4)-th minor of A. Moreover, we have
e’ ! € Cw(K) and [(E(K)/(e" Na)pl = (0 — DA(K),|, where (" ")¢
means the Z[G]-module generated by 77! ]

Therefore (77 !) is a submodule of Cy (K) but the opposite inclusion
does not hold true in general: if all A;’s are zero then ¢ € Cw(K) but € ¢
(€ e

Similarly to the situation of Theorem 8a, we have two Z,[G]-modules of
the same cardinality, so the question is whether they have some common
algebraic properties. An answer is given by the following

Theorem XIV. ([9, Theorem 2]) If § € Z,[G] annihilates Z[G]-module
(E(K)/{e"")a)p then 0 annihilates (o — 1)CI(K),, too. M

Theorem XIV has been proved by a modification of methods of Rubin.
Since ¢ is not a special number in Rubin’s sense, it was necessary to intro-
duce a new weakened version of specialness and to show that the standard
machinery of Thaine and Rubin can be adapted to this change.
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The Lifted Root Number Conjecture

The main theme of the previous chapters consists in the fact that there
are some deep connections between the unit group and the class group of
an abelian field. However this is only a very special case of a much more
general picture. This chapter should show the contribution of the author to
this general context. Unfortunately, going to this depth demands to be little
bit more vague.

We have seen that we have circular units in any number field K which is
an abelian extension of Q. Roughly speaking, Stark conjecture expects the
existence of numbers having similar properties for any abelian extension of
number fields.

For any Galois extension K/F of number fields, Chinburg defined in [21]
an invariant = (3, K/F) in the class group of the integral group ring Z[G],
where G = Gal(K/F). The so-called Root Number Conjecture (RNC for
short) states that € is the root number class; in particular €2 is conjecturally
zero if GG is abelian or of odd order. The invariant {2 measures, very roughly
speaking, the discrepancy of Galois module structure between the unit group
and the class group of K, but the actual description is much more subtle,
involving the canonical class of K/F and so-called Tate sequences.

In [31], a lifted invariant was presented. This new invariant, let us call
it w(K/F), exists if the Stark conjecture holds for K. It lies in a relative
K-group KT (Z|G]), and it maps to §2(3, K/F') under the canonical epimor-
phism from the K(T'(Z[G]) to the class group of Z[G]. At least for absolutely
abelian K, the lifted invariant exists, and the so-called Lifted Root Num-
ber Conjecture (LRNC) states that it is zero. The lifted conjecture has the
great advantage to localize well, that is, it is equivalent to a collection of
local statements w, = 0 with p running through all prime numbers. More
details can be found in the survey article [30]. Burns and Flach introduced
in [18] so-called equivariant Tamagawa numbers TQ(Q(0)x, Z[G]), which are
actually obtained from a more general construction by specializing to the
motive Q(0)g, and Burns has proved in [17] that TQ(Q(0)x, Z[G]) agrees
with w(K/F) up to an involution of Z[G] when G is abelian and w(K/F)
is defined. So actually LRNC is a special case of the Equivariant Tamagawa
Number Conjecture.

Ritter and Weiss proved in [38] that w(K/F) is zero for the case that
F = Q and K is abelian of odd prime degree p over Q such that K/Q is
tame and at most 2 primes ramify in /K. The principal result of [8] removes
the latter restriction:

Theorem XV. ([8, Theorem 6]) The Lifted Root Number Conjecture
holds for all cyclic tame extensions of Q of odd prime degree p. H
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The tameness condition was presumably not necessary, but we had not
done the extra calculations. Anyway, the only prime which might ramify
wildly is p. It should be mentioned here that in [19] D. Burns and C. Greither
proved LRNC up to its 2-primary part for all absolutely abelian fields K,
using rather involved methods; but it is hoped that the explicit approach of
[8] retains some interest. For example, the method of trees derived in [8],
which we have also used in [9], has been successfully used by A. Hayward in
(34].

Let us mention that also Theorem XIII has impact on the development
of this deep general framework. Theorem XIII shows that 7 is a (o —1)*~'-th
“power” in K* and it is proved by an explicit construction of ¢ in the group of
circular numbers of the m-th cyclotomic field, where m is the conductor of K.
This construction is rather technical but elementary from the point of view
that in fact only some combinatorial methods are used. This construction
inspired D. Burns and A. Hayward to derive the existence of £ by another way.
They replaced the direct use of combinatorial methods with a reduction to the
general Tamagawa number formalism and obtained the following advantages:
their approach works equally well in the setting of global function fields, as
well as to the extensions for which the associated L-functions have multiple-
order zero at s = 0 (rather than only first-order zero is in setting of [9]).
However it seems that the general Tamagawa number formalism does not
allow to obtain a proof of Theorem XIV.
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