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Abstract

The thesis is aiming at mathematical studies of spectral

problems, coming both from modern as well as classical

physics, where the significant features of geometry as re-

gards physical properties play a crucial role. We focus on

the properties of the nodal set of eigenfunctions and low-

lying eigenvalues of vibrating systems, on the influence

of curvature and torsion on spectral properties of curved

quantum-waveguide nanostructures, on the heat flow in

twisted tubes and on the influence of intrinsic curvature

on quantum transport on manifolds.

Mathematically, we deal with a spectral-geometric

analysis on bounded and quasi-cylindrical domains or,

more generally, on non-compact non-complete Rieman-

nian manifolds. The main achievements are represented

by the proof of the nodal-line conjecture for a large class

of non-convex and possibly multiply connected domains

and the establishment of Hardy-type inequalities in twist-

ed tubes and negatively curved surfaces.
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0 Introduction

The study of relations between geometry and spectral analysis
constitutes an important domain of mathematical physics. Al-
ready from a purely mathematical point of view, it is interesting
to understand the influence of the shape or metric of a manifold
and the type of boundary conditions to the spectra of associated
differential operators; and vice versa, one can try to character-
ize intrinsic properties of a manifold from given spectral data.
The physical interest comes from the fact that many systems in
Nature are described by partial differential equations, and the
latter are often studied by means of a spectral analysis of the
corresponding differential operators.

Moreover, eigenvalues and eigenfunctions of the spectral prob-
lems usually have direct physical interpretations, and estimating
these less accessible quantities on the basis of more accessible
geometrical data may already be of a practical interest for the
engineer or the physicist.

A typical example is the spectral problem for the Laplace
operator in a Euclidean domain. This is a usual model for
stationary states of a vibrating object in acoustics and of cer-
tain waves in electromagnetism (the Helmholtz equation), or for
bound states of a quantum particle constrained to a nanostruc-
ture in quantum physics (the stationary Schrödinger equation).
It is also related to the stochastic motion of a Brownian par-
ticle (the simplest version of the Fokker-Planck equation) and
to other diffusive processes. However, apart from very simple
symmetric situations where one can employ a separation of vari-
ables, no explicit formulae for solutions are available. But the
geometry of real systems can be rather complicated, and it is
necessary to develop alternative methods of spectral theory in
order to provide rigorous information about the spectrum.

The goal of the present thesis is to contribute to this vast
area of mathematical physics by analysing the interplay between
the geometry and spectrum in the following problems, coming
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both from classical as well as modern physics:

1. vibrating systems and the nodal-line conjecture,

2. twisting versus bending in waveguide-like structures,

3. quantum mechanics on curved manifolds.

ad 1. Historically, probably the first study of spectral-geomet-
ric relationship can be associated with the work of Lord Rayleigh
on vibrating systems from the second half of the 19th century.
His textbook, The Theory of Sound [32], is still referred to by
acoustic engineers today and has led to a number of interesting
mathematical conjectures, some of them being solved much later
or still open. An example of the latter is the famous conjecture
of L. E. Payne’s from 1967 [30], which states that the nodal
line of any second eigenfunction of the Dirichlet Laplacian in an
arbitrary planar domain touches the boundary.

Our contribution to this problem is both positive and nega-
tive. First, in [FK3], we show that the nodal-line conjecture ac-
tually does not hold for unbounded domains. Second, in [FK4],
we establish the validity of the conjecture for thin curved tubes
(of arbitrary cross-section and in any dimension). It is for the
first time when the conjecture has been proved for non-convex
domains without any symmetry conditions.

In addition to the aforementioned analysis of nodal set of
eigenfunctions, we obtain new isoperimetric-type estimates for
low-lying eigenvalues of the Dirichlet Laplacian in star-shaped
domains [FK5] and study the instability of solutions to the
damped wave equation in possibly unbounded domains [FK1].

ad 2. Waveguide is a physical device (usually of tubular shape)
that exhibits propagating states: electromagnetic or acoustic
waves in the context of classical physics, or scattering states
in quantum mechanics. Mathematically, one deals with the so-
called quasi-cylindrical domains, for which the spectral analysis
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is most difficult because of the presence of both eigenvalues and
continuous spectrum. Here the interest in the interplay between
the geometry and spectrum for such systems is mainly due to the
advent of nanotechnology in the second half of the 20th century.
Modern experimental techniques make it possible to fabricate
tiny semiconductor structures (often called nanostructures) of
various shapes devised and reproducible in the laboratory and
yet small enough to exhibit quantum effects, some of them being
of purely geometric origin.

Probably the most beautiful phenomenon is the existence of
curvature-induced bound states in quantum waveguides, math-
ematically first described by P. Exner and P. Šeba in 1989 [13].
This paper initiated extensive theoretical studies of waveguide-
like objects in quantum mechanics and the research field is still
active today, partly because of the advent of new structures
such as carbon nanotubes and graphenes. Our contribution to
the study of the effect of bending in waveguides consists mainly
in generalizing the results to higher dimensions [CDFK] and to
more general boundary conditions [KK1, FK2, K3] and in ap-
plying new mathematical methods in the analysis of scattering
states [KT].

However, a genuine breakthrough in the theory is represented
by our paper [EKK], in which we observe that the geometric
deformation of twisting leads to a completely opposite effect
in quantum waveguides, mathematically described by the ex-
istence of Hardy-type inequalities. Surprisingly, the effect of
twisting has been overlooked for almost two decades. We also
prove a variant of our original result in a different geometrical
setting [KK2] and apply the Hardy-type inequalities to diffusive
processes [KZ1, KZ2].

ad 3. The ambient manifold of a quantum waveguide is usu-
ally identified with the flat Euclidean space. This restriction
is obviously due to the semiconductor-physics motivation, how-
ever, at least from the mathematical point of view, one may

5



be interested equally in the situations when it is a general Rie-
mannian manifold. Moreover, this more general setting leads
to an interesting conceptual question: Which geometry is better

to travel in? Or, more precisely, what is the effect of ambient
curvature on quantum transport?

We have analysed the problem in the simplest non-trivial
case when the ambient space of the quantum traveller is a tubu-
lar neighbourhood of an infinite curve in a two-dimensional
(abstract) Riemannian manifold. Our principal results can be
roughly summarized as follows: positive curvature hurts the
transport [K1], while negative curvature improves it [K2]. Math-
ematically, the former follows as a consequence of the exis-
tence of discrete eigenvalues for the Laplace-Beltrami operator,
while the latter is based on Hardy-type inequalities. The results
have important consequences for the large time behaviour of the
Brownian motion [KK3].

The rest of this thesis syllabus consists in a more detailed
description of the aforementioned achievements.

1 Vibrating systems

The simplest mathematical model for a vibrating membrane
with fixed edge is the wave equation

∂2t u−∆xu = 0 (1)

in a planar domain Ω, subject to the Dirichlet boundary condi-
tion u = 0 on ∂Ω. The eigenfunctions un and eigenvalues λn of
the associated spectral problem

{

−∆u = λu in Ω ,

u = 0 on ∂Ω ,
(2)

are modes and squared frequencies of vibrations, respectively.
The zero set of an eigenfunction corresponds to stationary points
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of the membrane vibrated in a resonant frequency; it is a curve
known as the nodal line that forms peculiar shapes (also known
as Chladni’s patterns): various crossing curves or closed loops.

1.1 The nodal-line conjecture [FK3], [FK4]

It turns out that the shape of the nodal line is related to acous-
tic properties of the membrane. In particular, it is important
to know whether the nodal line of the second eigenfunction u2
can form a closed loop or not. In this context, the famous con-
jecture of L. E. Payne’s from 1967 [30] states that the nodal
line of any second eigenfunction of the Dirichlet Laplacian in an
arbitrary bounded two-dimensional Euclidean domain touches
the boundary.

So far, it has been shown that the conjecture holds for con-
vex domains [27, 24, 19] and there exist counterexamples with
multiply connected domains [21]. Nevertheless, it is still an open
question whether the conjecture holds for simply connected do-
mains. Let us also mention that the study of nodal sets of
eigenfunctions may of course be extended in a natural way to
higher dimensions [25, 14, 26] and manifolds [10, 4, 33, 16].

The positive result [FK4]. In the joint work [FK4] with
P. Freitas, we establish the validity of the conjecture in suffi-
ciently thin curved (and therefore non-convex) tubes Ω about
curves in Euclidean spaces of arbitrary dimension. We allow for
the tube to have an arbitrary cross-section (rotated appropri-
ately with respect to the Frenet frame of the reference curve),
and thus we do not exclude the case of multiply connected do-
mains either.

This result may be extended to higher eigenfunctions and we
actually show that, given a natural number N greater than or
equal to two, for any 2 ≤ n ≤ N the nodal set of the n-th eigen-
function un divides the tube Ω into precisely n subdomains, and
the closure of each of these subdomains has a non-empty inter-
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section with ∂Ω, provided that the diameter of the cross-section
of Ω is sufficiently small. Moreover, we locate the nodal set
near the zeros of the solution of an ordinary differential equa-
tion which is associated to the tube in a natural way, via the
geometry of the reference curve.

In addition to the fact that we support the validity of the
conjecture by a large class of not-previously-considered domains,
also our methodological approach to the problem is new. In-
deed, our results are based on a resolvent-type convergence of
the Dirichlet Laplacian in the tube Ω to a Schrödinger operator
on the reference curve. The technical problems due to the fact
that we actually deal with a highly singular perturbation (the
operators act on Hilbert spaces of different dimensions and the
spectrum of the Dirichlet Laplacian explodes in the limit) are
overcome by an appropriate identification of the Hilbert spaces
and a suitable renormalization of the Laplacian. Finally, we also
need to apply methods known from elliptic regularity theory in
a scale of Sobolev spaces and to use the maximum principle in
a refined way.

In the end of our paper [FK4], we extend the results to the
Laplace-Beltrami operator in tubular neighbourhoods of curves
on two-dimensional Riemannian manifolds.

The negative result [FK3]. In the other joint paper [FK3]
with P. Freitas, we show that the restriction to bounded do-
mains in the nodal-line conjecture is crucial. Indeed, if one
does not require the domain to be bounded, then the nodal
line need not touch the boundary even under the same assump-
tions that have been previously used in the bounded case to
prove the conjecture. More precisely, we prove that there exists
a simply-connected unbounded planar domain Ω which is con-
vex and symmetric with respect to two orthogonal directions,
and for which the nodal line of a second eigenfunction does not
touch the boundary ∂Ω. This domain can be chosen as one of
the following two types (see Figure 1):
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(i) the distance between the nodal line of a second eigenfunc-
tion and the boundary ∂Ω is bounded away from zero,
but the spectrum of the Dirichlet Laplacian is not purely
discrete;

(ii) the spectrum consists only of discrete eigenvalues, but the
infimum of the distance between a point on the nodal line
of a second eigenfunction and the boundary ∂Ω is zero.

(i) (ii)
r

r ⊥
2 ε

r

r

⊥ε h

Figure 1: Typical domains for which the nodal line of the second
eigenfunction does not touch the boundary.

The idea behind both examples is to start from a bounded
convex domain Ω0 which is invariant under reflections through
two orthogonal lines r and r⊥, and which we will assume to
be sufficiently long in the direction r⊥, such that its second
eigenvalue is simple and any corresponding eigenfunction is an-
tisymmetric with respect to r. In fact, its second nodal line
will be given by the closure of Ω0 ∩ r. We then append two
sufficiently thin semi-infinite strips to Ω0 in neighbourhoods of
the points where its second nodal line touches the boundary, in
such a way that the nodal line coincides with the axis r and thus
stays within these strips without touching the boundary.
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In order to establish case (i), we consider domains which are
asymptotically cylindrical. This means that there also exists
essential spectrum, and so it is necessary to prove that the do-
main does indeed possess a second discrete eigenvalue in this
case. In order for condition (ii) to be satisfied, we consider do-
mains which are asymptotically narrow and thus, although the
nodal line does not touch the boundary, it does get asymptoti-
cally close to it.

It should be stressed that while the nodal line in both our
examples does not touch the boundary, it is not closed.

1.2 The isoperimetric inequalities [FK5]

Among all drums of given area, the circular drum is the one

which produces the deepest bass note. This is a musical interpre-
tation of the famous Faber-Krahn inequality (conjectured al-
ready by Lord Rayleigh in 1877 [32] but proved almost thirty
years later, simultaneously and independently by G. Faber and
E. Krahn). Mathematically, in any dimension,

λ1(Ω) ≥ λ1(B) , (3)

where λ1(Ω) is the first eigenvalue of the Dirichlet Laplacian in
a bounded domain Ω and B is the ball having the same volume
as Ω. Modulus a set of zero capacity, equality in (3) is attained if
and only if Ω is the ball B and it is thus of interest to understand
how strong this connection is. In particular, if the domain Ω is
far away from B, must its first Dirichlet eigenvalue be much
larger than that of the ball?

This particular question was given a positive answer respec-
tively in [20] and [28, 2, 17], where the measure of deviation
of the domain from the ball which was used was based respec-
tively on the support function of the domain and the Fraenkel
asymmetry (i.e. Hausdorff distance if Ω is convex).

In the joint paper [FK5] with P. Freitas, we consider the issue
of whether having a large first Dirichlet eigenvalue implies being
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away from the corresponding ball. The main result of this paper
in this direction is the following estimate using the isoperimetric
constant as a measure of deviation of convex Ω from B:

|∂Ω|

|Ω|1−1/d
≥

|∂B|

|B|1−1/d

√

λ1(Ω)

λ1(B)

π

2
√

λ1(B1)
, (4)

where B1 is the d-dimensional ball of unit radius. This bound
is, in a sense, optimal for d-dimensional parallelepipeds.

The proof of (4) is based on the (sharp) inequality

λ1(Ω) ≤ λ1(B1)
|∂Ω|

d ρΩ |Ω|
, (5)

where ρΩ is the inradius of Ω. (5) is in turn a consequence of
a stronger upper bound for λ1(Ω), holding in the more general
case of star-shaped domains, that we establish by using trial
functions with mutually homothetic level sets. The stronger
bound depends on the support function of the domain Ω in a
non-elementary way (therefore we do not present it here) and it
is in fact an extension to arbitrary dimensions of an upper bound
for λ1(Ω) appearing in G. Pólya and G. Szegö’s 1951 book [31]
in the planar case.

As a by-product, we also obtain sharp upper bounds for the
second eigenvalue λ2(Ω) and spectral gap λ2(Ω)−λ1(Ω) of con-
vex domains.

1.3 The damped wave equation [FK1]

The wave equation (1) is of course an idealization, since it does
not take into account dissipation which always exists in real
vibrating systems. A more realistic mathematical model is given
by the damped wave equation

∂2t u+ a(x) ∂tu−∆xu = 0 . (6)

Here the positive part of the damping term a corresponds to a
dissipation, while negative “damping” models a supply of energy
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into the system. Apart from viscoelasticity, (6) models a vari-
ety of evolution processes in other areas of physics: electromag-
netism (the telegraph equation), relativistic quantum mechan-
ics, cosmology (the Klein-Gordon equation in a curved space-
time), etc. The indefinite damping also arises after linearizing
semilinear damped wave equations around a stationary solution.

In the case where the damping a remains non-negative, the
asymptotic behaviour of solutions of (6) is well understood [35].
However, the situation is much less clear in the case of the indefi-
nite damping, precluding the usage of standard energy methods.

In 1991, G. Chen et al. [5] conjectured that for bounded
intervals and under certain extra conditions on the damping the
trivial solution of (6) would remain stable. This was disproved in
1996 by P. Freitas [15], who showed that in the case of bounded
domains Ω this sign-changing condition is sufficient to cause
the existence of unbounded solutions of (6), provided that the
supremum norm of the damping is large enough.

Heuristically, this behaviour can be understood from the fact
that, when the sign-changing a is replaced by αa and the param-
eter α increases, equation (6) (formally) approaches a backward-
forward heat equation. Thus one does expect the appearance of
complex eigenvalues µ of the associated (operator pencil) spec-
tral problem

{

−∆u+ µau = −µ2u in Ω ,

u = 0 on ∂Ω ,
(7)

on the positive side of the real axis (which then give rise to un-
bounded solutions). On the other hand, and still at the heuristic
level, note that while for bounded domains the result is not un-
expected from the point of view of geometric optic rays either,
for unbounded domains this is not as clear.

The lack of results for unbounded domains and/or indefi-
nite damping was a motivation for another joint paper [FK1]
with P. Freitas, in which we establish the instability of solutions
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to the wave equation with large (non-homogeneous but time-
independent) indefinite damping in (possibly unbounded) do-
mains. Our approach is to reconsider (7) as a spectral problem
for a linear albeit non-self-adjoint operator in a Hilbert-space
setting and apply some semiclassical-type results for Schrödinger
operators in order to establish the existence of spectrum with
positive real part

In fact, the main idea behind the results is the same as that
used by P. Freitas in [15], however, the generalization is not
straightforward because of the presence of essential spectrum
for unbounded domains. Moreover, we work under very mild
regularity assumptions about the coefficients of a generalized
form of (6) and without any restrictions on the geometry of Ω.

2 Quantum waveguides

The evolution of the wavefunction ψ of an effectively free quan-
tum particle confined to a nanostructure with hard walls is de-
scribed by the Schrödinger equation (in suitable units)

i∂tψ = −∆xψ (8)

in a spatial domain Ω, subject to the Dirichlet boundary con-
dition ψ = 0 on ∂Ω. The spectral problem associated with (8)
formally coincides with (2), however, the interpretation of the
spectral quantities is different: the eigenfunctions un represent
quantum bound states and the corresponding eigenvalues λn are
their energies.

For unbounded domains Ω, the energy spectrum is not ex-
hausted by eigenvalues, since there is typically also continuous
spectrum, which in turn decomposes into absolutely and sin-
gularly continuous spectra (the former corresponding to prop-
agating/scattering states and the latter without physical inter-
pretation). This is precisely what happens for quantum waveg-

uides modelled by Ω being unbounded tubular neighbourhoods
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of curves in the three-dimensional Euclidean space (see Fig-
ure 2).

Figure 2: An example of a waveguide of elliptical cross-section.
Twisting and bending are demonstrated on the left and right
part of the picture, respectively.

Let us remark that the spectral problem for the Laplacian
in tubular domains is relevant in other areas of physics as well
(electromagnetic and acoustic waveguides, fluid dynamics, etc).

2.1 The effect of bending [CDFK]

It turns out that the energy spectrum is extremely sensitive to
geometric deformations of the quantum waveguide. It is proba-
bly best demonstrated by an astonishing 1989 result of P. Exner
and P. Šeba [13], who demonstrated the existence of discrete
eigenvalues in bent two-dimensional strips. A generalization to
three-dimensional tubes with circular cross-section was done in
[18, 11]. The result is indeed far from being obvious, because the
quantum bound states do not have classical counterparts (more
precisely, it is a wave effect).

In the joint work with B. Chenaud, P. Duclos and P. Freitas
[CDFK], we ask the question whether the phenomenon of the
existence of bound states in bent quantum waveguides contin-
ues to exist, first, for higher-dimensional tubes and, second, for
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tubes of general (i.e. non-circular) cross-sections. After general-
izing the geometric concept of curved waveguides to higher di-
mensions, we successfully extend the standard variational proof
of the existence of discrete spectrum to tubes whose (arbitrary)
cross-section is “appropriately” rotated along the reference curve
with respect to the Frenet frame. Moreover, we present a new
proof of the location of the essential spectrum, which does not
require any conditions whatsoever about the derivatives of cur-
vature.

2.2 The effect of twisting [EKK, KK2]

The above paper [CDFK], in which we study the effect of bend-
ing in quantum waveguides of arbitrary cross-section, does not
answer the question what happens with the spectrum (in par-
ticular with the discrete eigenvalues) if the cross-section is not

appropriately rotated along the reference curve with respect to
the Frenet frame, so that the tube is also twisted (see Figure 2).
The effect of twisting is more subtle, because the twist itself
(i.e. no bending) does not change the spectrum, and more re-
fined functional-analytic techniques are required to describe it.
This is probably the reason why the spectral consequences of
twisting in quantum waveguides had not been discovered until
our breakthrough contribution [EKK].

In this joint work with T. Ekholm and H. Kovař́ık [EKK], we
actually prove the existence of Hardy-type inequalities in twisted
waveguides. More precisely, we show that the functional inequal-
ity

∫

Ω

|∇ψ|2 − E1

∫

Ω

|ψ|2 ≥

∫

Ω

|ψ(x)|2

1 + |x|2
dx (9)

holds true for all ψ in the Sobolev space H1
0 (Ω) if, and only if,

the waveguide is locally twisted (no bending). Here E1 denotes
the threshold of the essential spectrum (coinciding with the first
Dirichlet eigenvalue in the cross-section). Consequently, twist-
ing acts as an repulsive interaction and the spectrum of a twisted
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waveguide is stable against small (attractive) perturbations.
Furthermore, we employ the inequality (9) in order to show

that the spectrum is stable against geometric deformations as
well: a simultaneously twisted and mildly bent waveguide does
not possess discrete eigenvalues. Putting it somewhat popularly,
this result provides a prescription for experimentalists on how
to produce bound-state-free waveguide nanostructures.

In the follow-up work with H. Kovař́ık [KK2], we show that
the effect of twisting is robust by establishing an analogous
Hardy-type inequality in a two-dimensional waveguide twisted
via boundary conditions (see Figure 3).

Figure 3: Twisting in a two-dimensional strip introduced via
switching Dirichlet (thick lines) to Neumann (thin lines) bound-
ary conditions at one point, and vice versa.

2.3 More general boundary conditions [KK1,
FK2, K3]

As we have already mentioned, the Dirichlet boundary condi-
tion ψ = 0 represents hard-wall boundaries, which are used
to model large chemical barrier on the interface between two
semiconductor materials. However, it is not the most general
condition modelling impenetrable walls of Ω. A more general
boundary condition, which ensures that there is no probabil-
ity current through the boundary ∂Ω, is given by Robin-type
boundary conditions

∂ψ

∂n
+ αψ = 0 on ∂Ω , (10)
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where α : ∂Ω → R and n denotes the outward unit normal
to ∂Ω. The extreme cases α = 0 and α = +∞ correspond to
Neumann and Dirichlet boundary conditions, respectively. The
other values of α may in principle be relevant for different types
of interface in a solid and it is thus important to understand
the interplay between the boundary conditions, geometry and
spectral properties.

In the joint work with J. Kř́ıž [KK1], we make a comparative
study of the situation of a planar strip with Dirichlet, Neumann
and a combination of these boundary conditions. It turns out
that the existence of bound state is highly sensitive to the nature
of boundary conditions imposed: there is always discrete spec-
trum in locally curved Dirichlet strips, there is no for Neumann
strips and, most interestingly, the existence of bound states in
strips with Dirichlet condition on one boundary curve and Neu-
mann on the other depends on the direction to which the strip
is bent. The last phenomenon was observed for the first time by
J. Dittrich and J. Kř́ıž in 2002 [9]. In addition to an extensive
study of the existence and properties of bound states by means
of variational methods, we give a new proof of the location of
the essential spectrum in quantum waveguides, which does not
require any conditions whatsoever about the decay of derivatives
of curvature at infinity.

In order to explain the peculiar spectral properties of the
strip with a combination of Dirichlet and Neumann boundary
conditions (the model of [9]) established in [KK1, 9] by the vari-
ational proofs, in the follow-up work [K3], we derive two-term
(semiclassical type) asymptotics for the eigenvalues in the limit
when the strip width tends to zero.

Finally, in the joint work P. Freitas [FK2], we consider a more
general situation when the Neumann boundary condition is re-
placed by a variable Robin boundary condition. We prove that,
for certain α, the spectral threshold of the associated Laplacian
is estimated from below by the lowest eigenvalue of the Lapla-
cian in a Dirichlet-Robin annulus determined by the geometry
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of the strip. Moreover, we show that an appropriate combina-
tion of the geometric setting and boundary conditions leads to a
Hardy-type inequality in the infinite strips. As an application,
we derive certain stability of the spectrum for the Laplacian in
Dirichlet-Neumann strips along a class of curves of sign-changing
curvature, improving in this way an initial result of J. Dittrich
and J. Kř́ıž [9].

2.4 Nature of the essential spectrum [KT]

In analogy with the spectra of atoms, the energy spectrum of a
locally curved quantum waveguide typically consists of the in-
terval [E1,∞) representing the continuous (or, more precisely,
essential) spectrum and of a number of discrete eigenvalues be-
low E1. In principle, the structure of the essential spectrum
can be quite complex: apart from the absolutely continuous
part (representing propagating states), there might be embed-
ded eigenvalues (bound states) and also a (physically obscure)
singularly continuous spectrum. For scattering theory, it is im-
portant to know that the singularly continuous spectrum is not
present and to have a control over the embedded eigenvalues.

In the joint work with R. Tiedra de Aldecoa [KT], we make
a thorough analysis of the essential spectrum of locally bent but
untwisted waveguides of arbitrary cross-section in any dimen-
sion. Under suitable assumptions about the decay of curvatures
at infinity, we prove that the singularly continuous spectrum is
empty and that the set of eigenvalues is closed and countable,
with possible accumulation points only at the thresholds given
by the discrete set of Dirichlet eigenvalues of the cross-section.
A limiting absorption principle follows as a consequence of the
results.

In addition to the generalizations to any dimensions and to
waveguides of arbitrary cross-section, the results of the paper
[KT] provide, in comparison with previous results established
in [12] by different methods, alternative sufficient conditions to
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ensure the important spectral properties. An analogous anal-
ysis of the essential spectrum for twisted but unbent three-
dimensional tubes was made only recently in [3].

Our analysis is based on Mourre conjugate operator method
developed for acoustic multistratified domains in [1, 8]. As a
technical preliminary, we carry out a spectral analysis for general
Schrödinger-type operators in straight tubes. We also apply the
general result to strips embedded in abstract surfaces.

2.5 Diffusive processes [KZ1, KZ2]

It is well known that some quantum properties (e.g. regularity
of bound states, criticality of the Hamiltonian, etc) are better
studied by considering the heat semigroup associated with the
Hamiltonian instead of the Schrödinger unitary group. In the
quantum-waveguide context, this consists in replacing (8) by the
heat equation

∂tu−∆xu = 0 (11)

(formally obtained by considering imaginary times in (8)). More-
over, (11) models diffusive processes in other areas of physics
(e.g. heat flow, Brownian motion, etc).

In the joint work with E. Zuazua [KZ1], we examine the in-
fluence of the existence of the Hardy inequality (9) in twisted
waveguides on the large-time behaviour of the solutions to (11).
First, we give a new proof of the Hardy inequality, which is
more elegant than that presented in [EKK] and holds under less
restrictive conditions about the geometry of Ω. Second, we es-
tablish a new Nash-type inequality, which holds irrespectively
of whether the tube is twisted or not. The latter can be used in
energy estimates to derive a robust decay estimate for the solu-
tions of (11), optimal for straight (i.e. untwisted) waveguides.

The main objective of the paper [KZ1] is to show that a
better decay estimate holds in twisted waveguides, as a conse-
quence of (9). Unfortunately, energy estimates does not seem
to be useful and we had to instead apply a refined version of
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the method of self-similar variables together with the theory of
weighted Sobolev spaces in order to show that (9) indeed ends
up enhancing the decay rate of the solutions. One version of our
main results can be stated in terms of the following inequality

‖u(t)‖ ≤ C (1 + t)−1/4−γ e−E1t ‖u0‖w . (12)

Here u0 denotes the initial datum, ‖ · ‖w stands for the norm in

the weighted space L2(Ω, w(x) dx) with w(x) := e|x|
2/4 and C, γ

are constants (independent of u, u0 and t). Our result says that

γ is (strictly) positive if, and only if, the tube Ω is twisted

(otherwise necessarily γ = 0, and it is easy to see that for
straight tubes the inequality (12) with γ = 0 is optimal). The
result can be interpreted as that the twisting implies a faster
cool-down/death of the medium/Brownian particle in the tube.

In the follow-up work with E. Zuazua [KZ2], we show similar
results, by the same techniques, for the two-dimensional waveg-
uide twisted via boundary conditions, for which the existence of
Hardy inequality was established in [KK2].

3 Quantum traveller on manifolds

The problem of quantization on submanifolds of Riemannian
manifolds has attracted a considerable attention from the be-
ginning of quantum mechanics, partly because of the frustrating
fact that different approaches lead to different results (see [22]
for a concise comparison and [34] for a recent review with many
references). Apart from a conceptual importance, the problem
is motivated by several specific applications, such as molecular
dynamics and physics of nanostructures.

A physically reasonable quantization procedure for the lat-
ter can be achieved by imposing a large confining potential in
the vicinity of a submanifold of the Euclidean space and by
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the renormalization consisting in throwing away the exploding
normal oscillations in the limit when the neighbourhood shrinks.
This leads to an effective Hamiltonian that contains information
on, inter alia, how the submanifold is embedded in the ambient
space [23] (so that the result is not really intrinsic).

Performing the same procedure for submanifolds in a curved

ambient space, one reveals that the effective Hamiltonian addi-
tionally depends on the intrinsic curvature of the ambient Rie-
mannian manifold [29]. An interesting conceptual question is
how this curvature affects the quantum transport. The problem
is equally interesting for other physical models, such as the heat
flow or Brownian motion on curved manifolds.

In a series of papers [K1, K2, KK3], we attacked the above
question in the simplest non-trivial model when the ambient
manifold is an (abstract) surface A of (Gauss) curvature K (not
necessarily embedded in the three-dimensional Euclidean space)
and the submanifold is an infinite curve of (geodesic) curva-
ture κ on it. The confining potential is represented by Dirichlet
boundary conditions imposed at a fixed (not necessarily small)
distance a from the curve.

Hence, we can again think about the spectral problem (2),
however, it is important to keep in mind that the strip-like tubu-
lar neighbourhood Ω is a manifold now and −∆ has the meaning
of the Laplace-Beltrami operator. Our main strategy to study
spectral properties of the operator is to express it in the Fermi
(or geodesic parallel) coordinates based on the reference curve
(see Figure 4).

3.1 Positive curvature [K1]

In [K1], we start with analysing the effect of positive curva-
ture K of the ambient manifold A. It turns out that the posi-
tivity leads to stationary solutions of the Schrödinger equation,
hurting in this way the transport in the strip Ω. Let us men-
tion that the presence of bound states was predicted by formal
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Figure 4: The parameterization of the strip Ω via Fermi coordi-
nates x = (x1, x2).

arguments in [7, 6].
More precisely, by a variational test-function argument, we

show that the Laplace-Beltrami operator on L2(Ω), subject to
Dirichlet boundary conditions, possesses discrete eigenvalues be-
low the essential spectrum, provided that K is a non-trivial
non-negative function on Ω vanishing at the infinity of the strip.
The bound states exist also if K vanishes identically but the
geodesic curvature κ is non-trivial and vanishing at the infinity
of the strip. The results can be viewed as a generalization of the
classical result of P. Exner and P. Šeba [13].

3.2 Negative curvature [K2]

The above paper [K1] does not answer the question what hap-
pens with the spectrum (in particular with the discrete eigenval-
ues) if the curvature is non-positive, although it is conjectured
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there that the bound states can be eliminated by the presence
of negative curvature. Indeed, the effect of negative curvature
is more subtle, for similar reasons as the twisting in quantum
waveguides (cf Section 2.2).

To get at least a partial insight into the problem, in the
follow-up paper [K2], we study a special class of negative am-
bient spaces: ruled surfaces. The corresponding strips Ω can
be thought as obtained by translating and rotating a segment
along a straight line in the three-dimensional Euclidean space
(see Figure 5).

Figure 5: A ruled strip as a twisted ribbon.

First, we establish the existence of Hardy-type inequalities (9)
in ruled strips along geodesics (i.e. κ = 0), as a consequence of
the presence of negative curvature. Second, we use these in-
equalities to show that there are no discrete eigenvalues even
if the reference curve is a mildly perturbed geodesic, improving
in this sense the transport in Ω. The results provide a positive
answer to some conjectures raised in [K1].
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3.3 Large-time behaviour [KK3]

The objective of the most recent joint work with M. Kolb [KK3]
is twofold. First, we establish the existence of Hardy-type in-
equalities (9) for a larger class of “negatively curved manifolds”;
for instance, it is just enough to assume that the strip is nega-
tively curved in a vicinity of the reference curve to have a Hardy-
type inequality (9) for small a. Second, we specify the meaning
of the “bad” and “good” transport in the positively and neg-
atively curved strips, respectively. Our approach is probabilis-
tic, viewing the traveller in Ω as a Brownian particle governed
by (11) and the properties of the transport are interpreted in
terms of the large-time behaviour of the solutions u. Roughly
speaking, by the “good geometry” for transport we understand
that which enables the Brownian traveller to reach his/her goal
as soon as possible or “to escape from his/her starting point as
far as possible”.

If the curvature K is non-trivial non-negative, vanishing at
the infinity of the strip, then the existence of the ground-state
energy λ1 < E1 implies that the decay rate is slower in com-
parison with the straight case (K = 0 = κ). This is as a direct
consequence of the (sharp) spectral-type estimate

‖u(t)‖ ≤ e−λ1t ‖u0‖ . (13)

On the other hand, the effect of negative curvature is more
subtle and, in analogy with the heat equation in twisted waveg-
uides (cf Section 2.5), we had to apply the machinery of self-
similar variables and weighted Sobolev spaces in order to con-
clude that (12) holds with positive γ whenever there is a Hardy
inequality of the type (9). Consequently, if the curvature K is
non-trivial non-positive, vanishing at the infinity of the strip,
the decay rate is faster in comparison with the straight case.

In addition to the norm-wise estimates (12) and (13), we also
establish a number of point-wise results for probability densities.
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[FK4] P. Freitas and D. Krejčǐŕık, Location of the nodal set for

thin curved tubes, Indiana Univ. Math. J. 57 (2008), no. 1,
343–376.
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