
Masaryk University Brno

Zuzana Došlá
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1 Subject, methods and results of the
dissertation

The dissertation contains a collection of the published papers [D1]–[D12], which are
devoted to the asymptotic theory of ordinary differential equations of the second and
higher orders. In particular, we study asymptotic behavior of solutions of the second order
nonlinear differential equations with p-Laplacian, oscillatory and asymptotic properties
of solutions of the third order differential equations and of the linear differential equations
with quasiderivatives.

In the following sections we present employed methods and some main results pub-
lished in papers [D1]–[D12].

1.1. Second order differential equations with p-Laplacian

Results published in [D9, D10, D11, D12] are concerned with the asymptotic behavior of
solutions of the nonlinear differential equation

(a(t)8p(x ′))′ = b(t)f (x) (1.1)

and its special cases — the quasilinear differential equation

(a(t)8p(x ′))′ = b(t)8q(x) (1.2)

and the half-linear equation

(a(t)8p(x ′))′ = b(t)8p(x). (1.3)

Throughout this chapter we assume that the functions a, b are continuous for t ≥ 0,

a(t) > 0, b(t) > 0, 8p(u) = |u|p−2u with p > 1, (1.4)

q > 1 and f is a continuous function on R such that f (u)u > 0 for u 6= 0.
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We start with a short historical and bibliographical survey.
For p = 2, equation (1.1) becomes a equation with the Sturm-Liouville differential

operator
(a(t)x ′)′ = b(t)f (x) (1.5)

and (1.3) becomes the linear equation

(a(t)x ′)′ = b(t)x. (1.6)

It is well known (see, e.g, [39]) that if (1.4) holds, then the linear equation (1.6) is
nonoscillatory. In [60], a complete analysis of the asymptotic behavior of solutions of (1.6)
has been presented. Later such results have been extended in [12, 13, 14, 15, 19, 58, 59, 65]
in many directions to the nonlinear equation (1.5). In some of these quoted papers, the case
of b eventually negative has been considered. A survey of the oscillatory and asymptotic
theories of equation (1.5) can also be found in the recent monograph [1].

Quasilinear equation (1.2) has been extensively considered in the last years, see, e.g.,
[19, 64, 76]. Solutions of (1.2) can be examined by interpreting (1.2) as a system of the
Emden–Fowler type for the vector (x, y) = (x, a8p(x ′)) given by

x ′ = 8p∗

( 1

a(t)

)

8p∗(y)

y ′ = b(t) 8q(x),

(1.7)

where p∗ denotes the conjugate number of p, i.e.

p∗ =
p

p − 1
or

1

p
+

1

p∗
= 1.

For this reason, equation (1.2) is sometimes called a generalized Emden-Fowler equation.
We refer to the book by Mirzov [61] where the uniqueness, continuability, existence, and
asymptotic behavior of solutions of (1.7) have been investigated. Other interesting results
concern the special case p = q, i.e. the half-linear equation (1.3), see e.g. [26, 27].

Such studies are essentially motivated by the dynamics of positive radial solutions of
reaction-diffusion problems modelled by the nonlinear elliptic equation

− div(α(|∇u|)∇u) + λf (u) = 0 (1.8)

where α : (0, ∞) → (0, ∞) is continuous and such that δ(v) := α(|v|)v is an odd
increasing homeomorphism from R into R, λ is a positive constant (the so called Thiele
modulus), and f represents the ratio of the reaction rate at the concentration u to the
reaction rate at concentration unity (see e.g. [20]). If α(|v|) = |v|p−2, then the differential
operator in (1.8) is the p-Laplacian 1p(u) = div(|∇u|p−2∇u) and (1.8) reduces to (1.1).

The aim of papers [D9, D10] is to study the asymptotic behavior of solutions of (1.1)
and (1.2). This task is accomplished by introducing an a-priori classification of solutions
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of (1.1) which is a natural extension of the well-known classification stated for the linear
case.

As usual, by a solution of (1.1) we always mean a continuously differentiable function
x such that a8p(x ′) has a continuous derivative satisfying (1.1). Following I. Kiguradze
[47, Definitions 12.4 and 12.5], a nontrivial solution x of (1.1) is said to be a singular
solution of the first kind of (1.1) if there exists T < ∞ such that x(t) ≡ 0 for t ≥ T ,
and a solution x of (1.1) is said to be a singular solution of the second kind of (1.1) if
there exists T < ∞ such that limt→T − |x(t)| = ∞. For brevity, denote by S1 (S2) the
set of all singular solutions of the first (second) kind. Observe that the problem whether
S1 = ∅ is closely related to the uniqueness problem with respect to the initial conditions.
A nontrivial and nonsingular solution of (1.1) is said to be a proper solution.

We say that a proper solution x of (1.1) defined on (αx, ∞) is either of class M
+ or

of class M
− according to whether x(t)x ′(t) is eventually positive or x(t)x ′(t) is negative

for every t > αx, i.e.

M
+ = {x proper solution of (1.1) : ∃tx ≥ αx : x(t)x ′(t) > 0 for t > tx},

M
− = {x proper solution of (1.1) : x(t)x ′(t) < 0 for t > αx}.

As for the singular solutions and solutions in classes M
−, M

+ for the quasilinear
equation (1.2), the results of [17, 18, 63] yield the following.

Theorem A. The following holds for equation (1.2):

(a) If p = q then S1 = S2 = ∅, M
− 6= ∅ and M

+ 6= ∅.

(b) If p < q then S1 = ∅, S2 6= ∅ and M
− 6= ∅.

(c) If p > q then S1 6= ∅, S2 = ∅ and M
+ 6= ∅.

Remark 1.1. When p > q, the class M
− can be empty. For instance, this happens when

p = 2, a(t) ≡ 1, 1 < q < 2 and lim inft→∞ t2b(t) > 0, see e.g. [47, Corollary 17.3].
When p < q, the class M

+ can be empty. For instance, this happens when p = 2,
a(t) ≡ 1, q > 2 and lim inft→∞ tqb(t) > 0, see e.g. [47, Corollary 17.4]).

In the sequel, we will extend Theorem A to equation (1.1), and we will give conditions
which ensure that the classes M

− and M
+ are not empty when p > q and p < q,

respectively.

As in the papers [12, 13, 14, 15, 19, 59, 65], both classes M
+, M

− can be divided,
a-priori, into the following four subclasses, which are mutually disjoint:

M
−
B = {x ∈ M

− : lim
t→∞

x(t) = `x 6= 0},

M
−
0 = {x ∈ M

− : lim
t→∞

x(t) = 0},

M
+
B = {x ∈ M

+ : lim
t→∞

x(t) = `x < ∞},

M
+
∞ = {x ∈ M

+ : lim
t→∞

|x(t)| = ∞}.
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In the following sections we are going to characterize these classes in terms of certain
integral conditions and, similarly to the linear case, to show that the convergence and/or
divergence of the two integrals

J1 = lim
T →∞

∫ T

0
8p∗

( 1

a(t)

)

8p∗

(

∫ t

0
b(s) ds

)

dt,

J2 = lim
T →∞

∫ T

0
8p∗

( 1

a(t)

)

8p∗

(

∫ T

t

b(s) ds
)

dt,

completely characterize the above four classes. We remark that in the linear case J1 = I1

and J2 = I2. In the following we will also use the notation

J3 =

∫ ∞

0
8p∗

( 1

a(t)

)

dt, J4 =

∫ ∞

0
b(t) dt.

We point out that a different approach and classification of solutions of (1.2) have
been used in the recent papers [64] and [76] under the assumptions a(t) ≡ 1 and J3 <

< ∞, respectively. As we will see, such conditions automatically reduce possible types
of solutions of (1.2).

Next results describe solutions in the classes M
− and M

+ in terms of the integrals
J1, J2 without any additional conditions on the nonlinearity f . Our approach is based on
the Tychonov fixed point theorem as well as on the asymptotic integration of (1.1).

Theorem 1.1 ([D10]). Eq. (1.1) has a solution in the class M
−
B if and only if J2 < ∞.

Theorem 1.2 ([D10]). If J1 < ∞ and J2 < ∞, then equation (1.1) has a solution x of
(1.1) such that the limit

lim
t→∞

x(t)
∫ ∞

t
8p∗

(

1
a(s)

)

ds
(1.9)

exists, is finite and is different from zero.

Theorem 1.3 ([D10]). Eq. (1.1) has a solution in the class M
+
B if and only if J1 < ∞.

The next two theorems have been proved using a complete asymptotic characterization
for the half-linear equations and on the existence of suitable upper and lower solutions for
(1.1), see [D10].

Theorem 1.4 ([D10]). Assume

lim sup
u→0

f (u)

8p(u)
< ∞. (1.10)

Then the following holds:

(a) Eq. (1.1) has no solution in the class S1.
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(b) Eq. (1.1) has solutions in the class M
−.

(c) If J1 = ∞ and J2 < ∞, then every solution x of (1.1) in the class M
− tends to a

non-zero limit as t → ∞, i.e., M
− = M

−
B .

(d) Eq. (1.1) has solutions in the classes M
−
0 and M

−
B if and only if J1 < ∞ and

J2 < ∞.

Theorem 1.5 ([D10]). Assume

lim sup
|u|→∞

f (u)

8p(u)
< ∞. (1.11)

Then the following holds:

(a) Eq. (1.1) has no solution in the class S2.

(b) Eq. (1.1) has solutions in the class M
+.

(c) If J1 < ∞ , then every solution x of (1.1) in the class M
+ is bounded, i.e.

M
+ = M

+
B 6= ∅.

(d) If J1 = ∞ , then every solution x of (1.1) in the class M
+ is unbounded, i.e.

M
+ = M

+
∞ 6= ∅.

Corollary 1.1 ([D10]). The following holds for equation (1.1):

(i) If J1 = ∞ and J2 = ∞, then M
−
B = ∅, M

+
B = ∅. In addition, if (1.10) is satisfied,

then M
− = M

−
0 6= ∅, and if (1.11) is satisfied, then M

+ = M
+
∞ 6= ∅.

(ii) If J1 = ∞ and J2 < ∞, then M
+
B = ∅. In addition, if (1.10) is satisfied, then

M
− = M

−
B 6= ∅, M

−
0 = ∅, and if (1.11) is satisfied, then M

+ = M
+
∞ 6= ∅.

(iii) If J1 < ∞ and J2 = ∞, then M
−
B = ∅. If in addition (1.10) is satisfied, then

M
− = M

−
0 6= ∅, and if (1.11) is satisfied, then M

+ = M
+
B 6= ∅ and M

+
∞ = ∅.

(iv) If J1 < ∞ and J2 < ∞, then both classes M
−
0 and M

−
B are nonempty. In addition,

if (1.11) is satisfied, then M
+ = M

+
B 6= ∅ and M

+
∞ = ∅.

Remark 1.2. For the quasilinear equation (1.2), i.e. for f (u) = 8q(u), (1.10) reduces to
the condition p ≤ q and (1.11) reduces to the condition p ≥ q.

For the linear equation (1.6), Theorem 1.5-(c),(d) reduces to Theorem 3 in [60],
and Corollary 1.1 to Theorem 2 in [12]. For equation (1.5), Theorem 1.4-(b), (d) gives
Theorems 6,8 in [12].

Our main results for equation (1.2) concern the following problems:
(1) Reciprocity principle and asymptotic behavior of quasiderivatives of solutions.
(2) Uniqueness problem in the class M

−.

The asymptotic behavior of quasiderivatives of solutions of (1.2) can be investigated
by the so called reciprocity principle. This principle extends to (1.3) a classical result of
Potter [71] on the oscillation of the second order self-adjoint linear equation (1.6), and
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was later used in [12, 13] for the asymptotics of nonoscillatory linear equation (1.6). It
links solutions of (1.2) to those of a suitable associated equation and enables, by a simple
way, to describe the qualitative behavior of solutions of (1.2) and their quasiderivatives .

Let x be a solution of (1.2) and let us denote the quasiderivative x [1] of x by

x[1](t) = a(t)8p(x ′(t)).

Then z = x[1] is a solution of the reciprocal equation of (1.2)

( 1

8q∗(b(t))
8q∗(z′)

)′

=
1

8p∗(a(t))
8p∗(z). (1.12)

This equation follows from (1.2) when a is replaced by 1/8q∗(b) and b by 1/8p∗(a).
Consequently, the integral J3 for (1.2) plays the same role as J4 for (1.12) and vice versa;
analogously J4 for (1.2) plays the same role as J3 for (1.12). Similarly, for (1.12) the
integrals J1, J2 become

J5 = lim
T →∞

∫ T

0
b(t) 8q

(

∫ t

0
8p∗

( 1

a(s)

)

ds
)

dt,

J6 = lim
T →∞

∫ T

0
b(t) 8q

(

∫ T

t

8p∗

( 1

a(s)

)

ds
)

dt,

respectively.
Following the classification used in [64, 76], we distinguish these types of solutions x

of (1.2):

Type (1) lim
t→∞

x(t) = 0, lim
t→∞

x[1](t) = 0;

Type (2) lim
t→∞

x(t) = 0, lim
t→∞

x[1](t) = c1 < 0;

Type (3) lim
t→∞

x(t) = c > 0, lim
t→∞

x[1](t) = c1 ≤ 0;

Type (4) lim
t→∞

x(t) = c > 0, lim
t→∞

x[1](t) = c1 > 0;

Type (5) lim
t→∞

x(t) = c > 0, lim
t→∞

x[1](t) = ∞;

Type (6) lim
t→∞

x(t) = ∞, lim
t→∞

x[1](t) = c1;

Type (7) lim
t→∞

x(t) = ∞, lim
t→∞

x[1](t) = ∞.

Theorem 1.6 ([D10]). The following holds for equation (1.2):

(a) Let p ≤ q. Every solution in M
− is of Type (1) if and only if J2 = ∞ and J6 = ∞.

(b) Eq. (1.2) has solutions of Type (2) if and only if J6 < ∞.

(c) Eq. (1.2) has solutions of Type (3) if and only if J2 < ∞.

(d) Eq. (1.2) has solutions of Type (4) if and only if J1 < ∞ and J5 < ∞.
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(e) Eq. (1.2) has solutions of Type (5) if and only if J1 < ∞ and J5 = ∞.

(f) Eq. (1.2) has solutions of Type (6) if and only if J1 = ∞ and J5 < ∞.

(g) Let p ≥ q. Every solution in M
+ is of Type (7) if and only if J1 = ∞ and J5 = ∞.

Remark 1.3. In [76], the same problem has been studied under the assumption J3 < ∞.
In [64], the case a(t) ≡ 1 is considered which represents the case J3 = ∞.

Theorem 1.6 gives
• in case J3 < ∞ Theorems 3.1, 3.2, 3.3, 3.4, 4.2, 4.5 and 4.6 of [76];
• in case a(t) ≡ 1 Theorems 2.2, 2.3, 2.4, 2.5, 3.6, 3.7 and 3.8 of [64].

Next result concerns the uniqueness in M
− and has been proved in [D9].

Theorem 1.7 (Uniqueness in M−). Consider equation (1.2) with p ≤ q.
For any (t0, x0) ∈ [0, ∞) × R\ {0} , there exists a unique solution x of (1.1) in the

class M
− such that x(t0) = x0 if and only if

∫ ∞

0

( 1

8p∗(a(t))
+ b(t)

)

dt = ∞ (1.13)

is satisfied.

This result has been later used in [D12] to prove the limit characterization of principal
solutions of half-linear equations.

A particular attention among quasilinear equations is paid to the half-linear equation
(1.3). The half-linear case is characterized by the fact that every solution of (1.3) is proper
and defined on the whole interval [0, ∞). It is straightforward to verify that solutions x in
the class M

− are positive decreasing or negative increasing in the whole interval [0, ∞).
In addition, the homogeneity property holds, that is, if x is a solution of (1.3), then so is
λx for any constant λ.

In the nonoscillation theory of the half-linear equations, an important role is played by
the principal solution. This concept has been introduced independently by Elbert–Kusano
[27] and by Mirzov [62]. In papers [D12], [11] we have proved the limit and integral
characterizations of the principal solutions of (1.3) in the case when b does not change its
sign.

It is well known that if the linear equation (1.6) is nonoscillatory, then there exists a
solution u of (1.6), called the principal solution at ∞, that is uniquely determined up
to a constant factor by one of the following conditions (in which x denotes an arbitrary
solution of (1.6) linearly independent of u):

lim
t→∞

u(t)

x(t)
= 0; (π1)

u′(t)

u(t)
<

x ′(t)

x(t)
for large t ; (π2)

∫ ∞ dt

a(t)u2(t)
= ∞. (π3)
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Roughly speaking, property (π1) means that the principal solution of (1.6) is the smallest
solution in a neighbourhood of infinity; property (π2) is connected with the associated
Riccati equation, and property (π3) is related to the Wronskian identity and to the so
called reduction of order formula. The notion of the principal solution was introduced by
W. Leighton and M. Morse [57] in studying positiveness of certain quadratic functionals
associated with (1.6). It was later characterized by means of the properties (π1)-(π3) by
P. Hartman and A. Wintner, see, e.g., Chapter 11 in [39].

Recently, a considerable effort has been devoted to extend the notion of the principal
solution to half-linear equation (1.3) (see, e.g., [25, 27, 62, 63]). In [27, 62], the principal
solution of (1.3) has been defined by the Riccati approach. It is shown that, when (1.3) is
nonoscillatory, among all eventually nonvanishing solutions

wx(t) = a(t)8p

(x ′(t)

x(t)

)

of the Riccati equation associated with (1.3), there exists one, say wu, that is continuable
to infinity and minimal in the sense that any other solution wx of the Riccati equation that
is continuable to infinity satisfies wu(t) < wx(t) for large t . The corresponding solution
u of (1.3) is then called principal. This definition can be formulated in the following way.

Definition 1.1. [27, 62] A nontrivial solution u of (1.3) is said to be the principal solution
of (1.3) if for every solution x of (1.3) such that x 6= λu , λ ∈ R,

u′(t)

u(t)
<

x ′(t)

x(t)
for large t. (1.14)

The set of principal solutions is nonempty and, obviously, principal solutions are
determined up to a constant factor. Since the sets M

−, M
+ of (1.3) are nonempty, any

principal solution necessarily belongs to M
−. As we will show later, in general, the

converse does not hold, i.e. there exist nonprincipal solutions in the class M
−.

As pointed out in [25], the simplest and most characteristic property (π1) of the
principal solutions to be the “smallest solutions in a neighbourhood of infinity” has been
until now a open problem for (1.3) . Our following result gives the answer to the question
posed in [25], by showing the equivalence between properties (π1) and (π2) in the half-
linear case.

Theorem 1.8 ([D12]). A solution u of (1.3) is principal if and only if

lim
t→∞

u(t)

x(t)
= 0 (1.15)

for any solution x of (1.3) such that x 6= λu, λ ∈ R.

Principal solutions of (1.3) can be completely characterized by the following integral
criterion which yields in the linear case the property (π3).
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Theorem 1.9 ([D12]). A solution u of (1.3) is principal if and only if
∫ ∞ dt

8p∗(a(t))u2(t)
= ∞. (1.16)

In [25], a different integral characterization of principal solutions for (1.3) has been
introduced, as the following theorem shows.

Theorem B. The following holds for equation (1.3):

(a) If p ≥ 2 and u is a principal solution of (1.3), then
∫ ∞ u′(t) dt

a(t)u2(t)8p(u′(t))
= ∞. (1.17)

(b) If p ∈ (1, 2] and there exists a solution u of (1.3) such that (1.17) holds, then u is
a principal solution of (1.3).

Remark 1.4. The above result has been stated in [25] for a more general case by assu-
ming, instead of b(t) > 0 on [0, ∞), the condition “(1.3) is nonoscillatory and u is its
solution such that u′(t) 6= 0 eventually”. The question whether the divergence of (1.17)
equivalently characterizes the principal solutions when b(t) > 0, is also posed in [25]. In
[D12], we have given examples illustrating that this conjecture is not true.

When b(t) < 0, the integral characterization of the principal solution is more compli-
cated. This is due to the fact that no of properties (1.16), (1.17) characterizes the principal
solution in general, see [11].

Some problems solved for equation (1.1) have been investigated in [D11] for nonlinear
differential equations with deviating argument

(

a(t)8p(x ′)
)′

= b(t)f
(

x(g(t))
)

(1.18)

where (1.4) is assumed, f is a continuous function on R satisfying f (u)u > 0 for u 6= 0,
and g : [0, ∞) → R is a continuous function satisfying limt→∞ g(t) = ∞.

Equation (1.18) exhibits phenomena which are different in comparison with equation
(1.1) without a deviating argument. For instance, every solution of (1.1) is nonoscillatory,
but the deviating argument can produce the oscillation of some or of all solutions of certain
equations of type (1.18) (see, e.g., [54], [33]).

The aim of [D11] is to establish sufficient conditions for the existence of monotone
solutions of (1.18) approaching zero as t → ∞. Such solutions are often called decaying
nonoscillatory solutions and have been deeply studied in the literature. We refer to [70]
and [54], where the particular case of (1.18) with a(t) ≡ 1 has been considered. Other
interesting contributions can be found in the recent book [33] and in the references
contained therein.

Some of our results hold without any additional conditions on g: we have proved that
Theorems 1.1, 1.2 and 1.3 remain to hold for (1.18), see Theorems 3, 5 and 6 in [D11].
However, the delayed argument sometimes generates a different situation than it occurs
for the corresponding equation without delay, as the following results illustrate.
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Theorem 1.10 ([D11]). Assume that g is eventually nondecreasing and g(t) < t eventu-
ally. If conditions

lim sup
t→∞

∫ t

g(t)

8p∗

( 1

a(s)

)

8p∗

(

∫ t

s

b(τ) dτ
)

ds > 1 (1.19)

and

∃ ε > 0 such that
8p(u)

f (u)
≤ 1 for |u| < ε (1.20)

are satisfied, then (1.18) has no solution in the class M
−.

Corollary 1.2 ([D11]). Assume that g is eventually nondecreasing and g(t) < t eventually.
If the conditions J1 = ∞, (1.19) and (1.20) are verified, then all bounded solutions of
(1.18) (if any) are oscillatory.

Theorem 1.11 ([D11]). Eq. (1.18) has decaying nonoscillatory solutions, i.e. M
−
0 6= ∅, if

any of the following condition is satisfied:

(a) J2 < ∞, g(t) < t eventually;

(b) f is nondecreasing, J3 < ∞ and

lim
T →∞

∫ T

0
b(t) f

( ∫ T

g(t)

8p∗

( 1

a(s)

)

ds

)

dt < ∞.

Notes. In [D12], the notion of the principal solution and its characterizations have been
extended to the nonlinear differential equation (1.1) by defining the concept of the minimal
set. The limit and integral characterizations for the half-linear equation (1.3) with b(t) < 0
have been proved in [11].

The relationships between integrals J1 and J6 (and similarly between J2 and J5) has
been proved in [24] where applications to equations (1.3) and (1.2) with b(t) < 0 have
also been made.

1.2. Third order differential equations

Results published in [D1]–[D7] are concerned the asymptotic and oscillatory behavior of
solutions of the third order linear and nonlinear differential equations.

Many authors have studied the oscillatory, nonoscillatory and asymptotic behavior of
the third order linear differential equation in the normal form

x ′′′(t) + p(t)x ′(t) + q(t)x(t) = 0 (1.21)

where p, q are real continuous functions for t ≥ 0. Among the numerous results dealing
with this subject, we refer to the books by Greguš [36], Kiguradze-Chanturia [47], Swanson
[75] and the references contained therein.
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We say that x is an oscillatory solution of (1.21) if it has arbitrary large zeros. Otherwise
this solution is said to be nonoscillatory. Equation (1.21) is said to be oscillatory if it
has at least one nontrivial oscillatory solution, and nonoscillatory if all its solutions are
nonoscillatory.

Some authors (see, e. g., [34, 38]) consider third order differential equations of the
form

(r(t)x ′(t))′′ + q(t)x(t) = 0,

(r(t)x ′′(t))′ + q(t)x(t) = 0.

A prototype of these equations is the binomial equation

x ′′′ ± q(t)x = 0 (E±)

where q is a positive continuous function for t ≥ 0. It is well known that there is an
analogy between the space of solutions of (E+) and (E−). For instance, by using the
notion of an equation of the class I and II introduced by Hanan in [38], it is easy to show
that (E+) is nonoscillatory if and only if (E−) is nonoscillatory. Another result in this
direction is given in [78] (see also [74]) where it is proved that if there exists λ > 0 such
that

∫ ∞

t2−λq(t)dt = ∞,

then (E±) have both oscillatory and nonoscillatory solutions. In addition, every nonos-
cillatory solution x of (E+) tends to zero as t → ∞ and satisfies, for all large t , either
the inequalities x(t) > 0, x ′(t) < 0, x ′′(t) > 0 or the inequalities x(t) < 0, x ′(t) > 0,
x ′′(t) < 0, while every nonoscillatory solution of (E−) tends to infinity as t → ∞ and
satisfies, for large t , either x(t) > 0, x ′(t) > 0, x ′′(t) > 0 or x(t) < 0, x ′(t) < 0,
x ′′(t) < 0. Some authors refer to this property of (E+) as the property A and of (E−)

as the property B. Both properties have been extended in several directions to linear and
nonlinear equations of n−th order, which will be treated later.

Another basic classification concerning third order linear differential equaitons has
been employed, in an implicit form, by Sansone [73] and later on has been formalized by
Hanan [38].

Definition 1.2. Equation (1.21) is said to be of Class I if every solution x for which
x(a) = x ′(a) = 0, x ′′(a) > 0 (a > 0) satisfies x(t) > 0 on (0, a).

Equation (1.21) is said to be of Class II if every solution x for which x(a) = x ′(a) = 0,
x ′′(a) > 0 satisfies x(t) > 0 on (a, ∞).

The terminology (1.21) being of Class I or Class II plays an important role in the
study of the conjugate points (zeros) for the solution of the linear equation (1.21). In the
literature, there are numerous papers dealing with this classification: we refer to the books
[36, 75] for an extensive bibliography.

In [D1, D7], we consider the differential equation

y ′′′ + 2q(t)y ′ + (q ′(t) + r(t))y = 0 (1.22)
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where
q ∈ C1([0, ∞), R), r ∈ C([0, ∞), R)

(functions q, r may change its sign).
If r(t) = 0 we have the self-adjoint equation (known as Appel’s equation)

x ′′′(t) + 2q(t)x ′(t) + q ′(t)x(t) = 0 (1.23)

and all its solutions are given by

x = c1z
2
1 + c2z1z2 + c3z

2
2, (1.24)

where z1, z2 are linearly independent solutions of the second order linear equation

z′′(t) +
1

2
q(t)z(t) = 0. (1.25)

In [41] Jones described the types of possible bases for the solution space of (1.22)
with respect to the possible number of oscillatory solutions in a given basis.

In view of (1.24), the self-adjoint equation (1.23) has the following properties:

• If (1.25) has an oscillatory solution, then (1.23) has bases consisting of 0, 1, 2 or 3
oscillatory solutions, (see e.g. [36, Theorem 2.52]);

• If all solutions of (1.25) are bounded, then equation (1.25) has all solutions in L2 if and
only if equation (1.23) has all solutions in L2.

We seek for the possibility of perturbing (1.23) to (1.22) in such a way that these properties
are preserved. Fro this purpose, in [D1] we have studied the problem when equations (1.22)
and (1.23) are asymptotically equivalent.

Let X and Y be the space of all solutions of (1.22) and (1.23) on [0, ∞), respectively.
The continuity of coefficients of equations (1.22), (1.23) ensures X 6= ∅, Y 6= ∅ and thus,
X, Y are linear spaces of the dimension three.

Theorem 1.12 ([D1]). Assume that
∫ ∞

0
|r(t)| dt < ∞ (1.26)

holds and that z1, z2 are bounded solutions of (1.25) with z1(t)z
′
2(t) − z′

1(t)z2(t) ≡ 1.
Then the mapping V : Y → X defined by

(Vy)(t) = y(t) −

∫ ∞

t

K(t, s)r(s)y(s) ds, (1.27)

where

K(t, s) =

∣

∣

∣

∣

z1(t) z2(t)

z1(s) z2(s)

∣

∣

∣

∣

(1.28)

is a one-to-one mapping and

lim
t→∞

|x(t) − y(t)| = 0 (1.29)

for every x(t) ∈ X and y(t) ∈ Y such that x(t) = Vy(t).
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Remark 1.5. Equations (1.22) and (1.23) satisfying (1.29) are said to be asymptotically
equivalent. Using Theorem 1.12 and applying the asymptotic properties of (1.25), we can
obtain asymptotic properties of solutions of (1.22). For example, if all solutions of (1.25)
converge to zero as t → ∞ and (1.26) holds, then all solutions of (1.22) converge to zero
as t → ∞.

Under a stronger assumption than (1.26) the following result holds.

Theorem 1.13. Suppose that every solution of (1.25) is bounded on [0, ∞) and
∫ ∞

0

(

∫ ∞

t

|r(s)| ds
)2

dt < ∞. (1.30)

Then
∫ ∞

0
(x(t) − y(t))2 dt < ∞ (1.31)

holds for every x ∈ X and y ∈ Y such that x = Vy, where V : Y → X is determined by
(1.27). In particular, every solution x of (1.23) is in L2 if and only if every solution y of
(1.22) is in L2.

Now we show some applications of Theorems 1.12 and 1.13. Our first result concerns
the types of bases which are possible for the solution space of (1.22) with respect to the
number of oscilatory solutions in a given basis.

Lemma 1.1 ([D1]). Assume (1.26). Let q(t) > 0 be such that q, q−1 are bounded and there
exists γ 6= 0 such that qγ is either convex or concave. Then (1.22) has a nonoscillatory
solution y(t) such that lim inft→∞ y(t) > 0. Furthermore, every solution of (1.22) is
bounded.

Theorem 1.14 ([D1]). Let equation (1.22) be of Class I or Class II, oscillatory and let
the assumptions of Lemma 1.1 be fulfilled. Then the solution space of (1.22) has bases
consisting of exactly 0, 1, 2 or 3 oscillatory solutions.

Our second application concerns the problem of the existence of the square integrable
solutions of (1.22). This problem has been initiated by H. Weyl (1910) for the second
order equation (1.25), and later it has been deeply developed for the self-adjoint 2nth
order linear differential equations in the connection with the deficiency index of the
associated differential operators.

As we mentioned above, the self-adjoint equation (1.23) has the following property:
Let all solutions of (1.25) be bounded. Equation (1.25) has all solutions in L2 if and only
if the Appel’s equation (1.23) has all solutions in L2.

The next theorem extends this property for the perturbed equation (1.22).

Theorem 1.15 ([D7]). Let all solutions of (1.25) be bounded.

(a) If (1.26) holds and all solutions of (1.25) belong to L2, then all solutions of (1.22)
belong to L2.
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(b) Let (1.30) hold. Equation (1.25) has all solutions in L2 if and only if equation (1.22)
has all solutions in L2.

Remark 1.6. If all solutions of (1.25) belong to L2, then equation (1.25) is oscillatory
(see e.g. [8, Theorem 5.1]). Hence, equation (1.23) has an oscillatory solution. Conditions
ensuring that all solutions of (1.25) are bounded and belong to L2 can be found in e.g.[8].

In [D2]—[D5], we study the oscillatory and asymptotic properties of solutions of the
third order linear equation in the form

( 1

p(t)

( 1

r(t)
x ′(t)

)′)′

+ q(t)x(t) = 0 (L)

and of its adjoint equation
( 1

r(t)

( 1

p(t)
x ′(t)

)′)′

− q(t)x(t) = 0 (LA)

where

r, p, q ∈ C0([0, ∞), R), r(t) > 0, p(t) > 0, q(t) > 0 on [0, ∞). (1.32)

When the functions p and/or r do not have a continuous first and/or second derivative, then
(L) may be interpreted as a first order differential system for the vector (x [0], x[1], x[2])

given by

x[0] = x, x[1] =
1

r
x ′, x[2] =

1

p

(1

r
x ′

)′

=
1

p

(

x[1]
)′

,

where x is a solution of (L). The functions x [i] are called the quasiderivatives of x.
Following Kiguradze-Chanturia [47], we introduce the following definitions.

Definition 1.3. A solution x of (L) is said to be a Kneser solution if for i = 0, 1

x[i](t)x[i+1](t) < 0 for t ≥ 0. (1.33)

A solution u of (LA) is said to be a strongly increasing solution if for i = 0, 1

u[i](t)u[i+1](t) > 0 for large t. (1.34)

Eq. (L) is said to have the property A if every solution x of this equation is either
oscillatory or satisfies for i = 0, 1, 2

|x[i](t)| ↓ 0 as t → ∞. (1.35)

Eq. (LA) is said to have the property B if every solution u of this equation is either
oscillatory or satisfies for i = 0, 1, 2

|u[i](t)| ↑ ∞ as t → ∞, (1.36)

where the notation y(t) ↓ 0 and y(t) ↑ ∞ mean that y is monotone decreasing to zero as
t → ∞ or monotone increasesing to infinity as t → ∞, respectively.
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It is well-known (see e.g. the book by Elias [31]) that (L) is oscillatory if and only
if (LA) is oscillatory. It follows from the results of Hartman/Wintner (see [39], p.506)
and of Kusano et al.[50, Lemma 2] that equation (L) has Kneser solutions and (LA) has
strongly monotone solutions.

If (L) has property A, then every nonoscillatory solution is a Kneser solution and if
(LA) has property B, then every nonoscillatory solution is a strongly monotone solution.
The following questions arise for equation (L):

(i) Do the converse statements hold?

(ii) Does there exist a relationship between the property A and property B?

(iii) Does there exist a relationship between the property A [property B] and oscillation?

In the sequel we give an affirmative answer to these questions, and we state the oscillation
and nonoscillation criteria for (L).

We start with the basic property of linear equations with quasiderivatives, which is
often used in our later investigation.

Theorem 1.16 ([D2]). Equation (L) is of Class I and (LA) is of Class II.

Using this property we can describe the structure of the solution space of equations (L)

and (LA). From a result in [21], this space always contains a two-dimensional subspace
either of oscillatory solutions or of nonoscillatory ones. The following holds:

Theorem 1.17 ([D2]). If equation (L) has oscillatory solution, then the solution space of
(L) has a basis consisting of exactly two or three oscillatory solutions.

If equation (LA) has oscillatory solution, then the solution space of (LA) has a basis
consisting of exactly two oscillatory solutions.

Using Theorem 1.16 we also get the following oscillation and nonoscillation criteria.
For this purpose, the following notation is used:

I (ui) =

∫ ∞

0
ui(t) dt, I (ui, uj ) =

∫ ∞

0
ui(t)

∫ t

0
uj (s) ds dt, i, j = 1, 2

I (ui, uj , uk) =

∫ ∞

0
ui(t)

∫ t

0
uj (s)

∫ s

0
uk(τ ) dτ ds dt, i, j, k = 1, 2, 3,

where ui , i = 1, 2, 3, are continuous positive functions on [0, ∞).

Theorem 1.18 ([D2]). Let one of the following integrals

I (q, r, p), I (p, q, r) I (r, p, q)

be convergent. Then (L) is nonoscillatory.

Theorem 1.19 ([D2]). Let one of the following conditions be satisfied:

(i) I (p) = I (r) = I (q, r) = ∞;
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(ii) I (q) = I (p) = I (r, p) = ∞;

(iii) I (r) = I (q) = I (p, q) = ∞.

Then (L) is oscillatory,

Our main result is the following theorem which has been proved in [D4].

Theorem 1.20 (Equivalence Theorem). Eq. (L) has property A if and only if (LA) has
property B.

The above results yield the following result.

Corollary 1.3 ([D5]). The following assertions are equivalent:

(a) Eq. (L) has property A.

(b) Eq. (LA) has property B.

(c) Eq. (L) is oscillatory and we have

I (q, p, r) = I (r, q, p) = I (p, r, q) = ∞. (1.37)

(d) Eq. (LA) is oscillatory and (1.37) holds.

In [D6], we consider the third order linear differential equation

x ′′′ + q(t)x ′ ± r(t)x = 0 (e±)

and the corresponding nonlinear one

x ′′′ + q(t)x ′ ± r(t)f (x) = 0 (n±)

where
q, r are continuous functions for t ≥ 0, q(t) ≤ 0, r(t) > 0 (1.38)

and
f is a continuous function in R such that f (u)u > 0 for u 6= 0. (1.39)

By a solution of (n±) we mean a three times differentiable function x satisfying (n±)

for large t and sup {|x(t)| : t > T } > 0 for every T sufficiently large. For the results
concerning continuability to infinity of solutions of (n±), we refer the reader to [37, 47].
A nontrivial solution of (e±) [(n±)] is said to be oscillatory or nonoscillatory according
to whether it does or does not have arbitrarily large zeros. Equation (e±) [n±] is called
oscillatory if it has at least one oscillatory solution and nonoscillatory otherwise, i.e. if all
its solutions are nonoscillatory.

Equation (e+) is said to have property A if every solution of (e+) either is oscillatory
or satisfies the conditions

x(t)x ′(t) < 0, x(t)x ′′(t) > 0 for t ≥ 0 (1.40)
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lim
t→∞

x(t) = lim
t→∞

x ′(t) = lim
t→∞

x ′′(t) = 0.

Equation (e−) is said to have property B if every solution of (e−) either is oscillatory or
satisfies the conditions

x(t)x ′(t) > 0, x(t)x ′′(t) > 0 for all large t (1.41)

lim
t→∞

|x(t)| = lim
t→∞

|x ′(t)| = lim
t→∞

|x ′′(t)| = ∞.

We recall that a solution x of (e+) which satisfies condition (1.40) is a Kneser solution
of (e+), and similarly a solution x of (e−) which satisfies (1.41) is a strongly monotone
solution of (e−). We also recall that (e+) always has Kneser solutions and (e−) always
has strongly monotone solutions (see, e.g, [39] and [56]). Similar definitions hold for the
nonlinear equations (n±). In this case condition (1.40) holds for large t .

For the linear equations, the relationship between the oscillatory solutions and asympto-
tic behavior of nonoscillatory ones is often considered. In particular, in the quoted paper
[56], Lazer proved the following:

Lazer Theorem. Assume q(t) ≤ 0 for t ≥ 0.

(a) Equation (e+) is oscillatory if and only if every nonoscillatory solution x of (e+) is
a Kneser solution and limt→∞ x ′(t) = limt→∞ x ′′(t) = 0.

(b) If equation (e−) is oscillatory, then every nonoscillatory solution x of (e−) is a
strongly monotone solution and limt→∞ |x(t)| = limt→∞ |x ′(t)| = ∞.

Motivated by equations with constant coefficients, Lazer posed the following question
(see [56], p.444): Does every nonoscillatory solution of (e+) tend to zero as t tends to
infinity when (e+) is oscillatory?

In the special case when q ≡ 0, this conjecture was proved by Gaet. Villari in
[78] and later by Lazer ([56, Th.1.5]) and Greguš ([36, Th.3.12]) under some additional
assumptions on q, r . In particular, Greguš proved the equivalence between the oscillation
and property A for (e+) provided q ∈ C1([0, ∞)). Gera [35] has proved the converse of
the Lazer Theorem (b), i.e., if every nonoscillatory solution of (e−) is a strongly monotone
solution, then (e−) is oscillatory.

Our next result gives a complete positive answer to the Lazer conjecture, by showing
that it is true without any additional condition.

Theorem 1.21 ([D6]). Assume (1.38). Then,

(a) Equation (e+) is oscillatory if and only if (e+) has property A.

(b) Equation (e−) is oscillatory if and only if (e−) has property B.

The obtained results in the linear case are interesting themselves by virtue of their
necessary and sufficient character, but they are useful also in the study of the nonlinear
equations.

Theorem 1.22 ([D6]). Assume (1.38), (1.39) and lim inf |u|→∞ f (u)/u > 0.
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(a) If the linear equation
y ′′′ + q(t)y ′ + µ r(t)y = 0

is oscillatory for every µ > 0, then (n+) has property A.

(b) If the linear equation
y ′′′ + q(t)y ′ − µ r(t)y = 0

is oscillatory for every µ > 0, then (n−) has property B.

Notes. Applications of the Equivalence Theorem to the nonlinear third order differential
equations with quasiderivatives has been given in [D5] and to the nonlinear differential
equations with a delay in [9]. Further contribution about the asymptotic behavior of
solutions of the nonlinear third order differential equations can be found in author’s
papers [3, 4, 5, 6].

1.3. Linear differential equations of n-th order

Consider the two-term linear differential equation

Lnx + p(t)x = 0 (1.42)

where p(t) 6= 0 is continuous on t ∈ [0, ∞) and Ln is the disconjugate differential
operator

Lnx ≡
d

dt

1

an−1(t)
. . .

d

dt

1

a1(t)

d

dt
x,

with ai(t) > 0 (i = 1, . . . , n), ai ∈ Cn−i([0, ∞)). These equations, sometimes called
equations with quasiderivatives, enjoy a very rich structure of solutions and they are the
natural generalization of the binomial equations

x(n) + p(t)x = 0.

By the result of Trench [77], the disconjugate differential operator Ln can be written in a
canonical form, that is,

Lnx ≡
1

bn

d

dt

1

bn−1(t)
. . .

d

dt

1

b1(t)

d

dt

1

b0(t)
x

such that the functions bi(t) > 0 (i = 0, 1, 2, . . . , n) are continuous,
∫ ∞

bi = ∞, (i =

= 0, . . . , n − 1) and determined up to positive multiplicative constants with the product
1. The explicit formulas for the functions bi depend on the convergence or divergence
of the integrals

∫ ∞
ai . In [D3], we have investigated the third order differential operator

L3, the canonical representation of L3, and the relations between the corresponding linear
equations.

Oscillatory and asymptotic properties of solutions of (1.42) are usually described by the
property A and property B. We refer to the recent papers [16, 23, 28, 29, 30, 48, 50, 53, 68]
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and the books [31, 47], where an extensive bibliography on this topic can be found. Usually,
it has been assumed that Ln is in the canonical form. This fact implies the special structure
of the set of nonoscillatory solutions, see e.g. [47, 53, 50].

Our main contribution in this field is the generalization of the Equivalence Theorem
1.20 to higher order equations with quasiderivatives. It is worth noting that our result
holds without assuming that the operator Ln is in the canonical form.

Consider the differential equation
(

1

an−1(t)

(

· · ·

(

1

a1(t)
x ′

)′

· · ·

)′ )′

+ λ a0(t)x = 0 (1.43)

where the coefficients ai , i = 0, 1, . . . , n − 1, are continuous positive functions on the
interval I = [0, ∞) and λ is a real parameter different from zero. Equation (1.43) can be
interpreted as a first order differential system for the vector (x [0], x[1], . . . , x[n−1]) given
by

x[0](t) = x(t), x[1](t) =
1

a1(t)
x ′(t), . . . , x[n−1](t) =

1

an−1(t)

(

x[n−2](t)
)′

.

The functions x[i], i = 0, 1, . . . , n − 1 are called the quasiderivatives of x. By a solution
of (1.43) we mean a continuously differentiable function x such that its quasiderivatives
x[i] exist and are continuous on I , and for t ∈ I it satisfies (1.43). As usual, a nontrivial
solution of (1.43) is said to be oscillatory or nonoscillatory according to whether it does
or does not have arbitrarily large zeros.

Jointly with (1.43), consider the adjoint equation
(

1

a1(t)

(

· · ·

(

1

an−1(t)
u′

)′

· · ·

)′ )′

+ (−1)nλ a0(t)u = 0. (1.44)

The spaces of solutions of (1.43), (1.44) are mutually related. For instance, (1.43) has at
least one oscillatory solution if and only if the same happens for (1.44) (see, e.g., [31,
Th.8.33] or [28, Cor.2]). Other related contributions are in [42] and, when n = 3, in [36].

Following Kiguradze and Kondratiev, (see, e.g., [47]), we use the following definition.

Definition 1.4. Equation (1.43) is said to have property A if, for n even, all its solutions
are oscillatory and, for n odd, every solution x is either oscillatory or satisfies (1.35) for
i = 0, 1, . . . , n − 1.

Equation (1.43) is said to have property B if, for n even, every solution x is either
oscillatory or satisfies (1.35) or (1.36) for i = 0, 1, . . . , n − 1, and, for n odd, every
solution is either oscillatory or satisfies (1.36) for i = 0, 1, . . . , n − 1.

Remark 1.7. Property A (property B) ensures the existence of all types of solutions
occuring in its definition, i.e. the existence of Kneser (and/or strongly monotone) solutions
as well as the existence of oscillatory solutions (see [31, Theorems 8.5 and 8.8]). Note
that solution of (1.43) is said to be a Kneser solution [strongly monotone solution] if it
satisfies (1.33) [(1.34)] for i = 0, 1, . . . , n − 2.
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The following relationship between the properties A and B holds for the binomial
equations, see [47, Theorem 1.3]:

Theorem C. Let n be odd and p be a continuous positive function on [0, ∞). Equation
x(n) + p(t)x = 0 has property A if and only if its adjoint equation x (n) − p(t)x = 0 has
property B.

Our main result, proved in [D8], extends this theorem and Theorem 1.20 to equations
(1.43) and reads as follows.

Theorem 1.23 (Equivalence Theorem). The following holds:

(a) Let λ > 0 and n be odd. Equation (1.43) has property A if and only if equation (1.44)
has property B.

(b) Let λ > 0 and n be even. Equation (1.43) has property A if and only if equation (1.44)
has property A.

(c) Let λ < 0 and n be odd. Equation (1.43) has property B if and only if equation (1.44)
has property A.

(d) Let λ < 0 and n be even. Equation (1.43) has property B if and only if equation (1.44)
has property B.

There are many papers in the literature devoted to the property A or B independently.
The Equivalence Theorem enables us to apply criteria on property A to obtain criteria on
property B and vice versa.

Notes. The extension of property A and property B to the nonlinear differential equations
associated with the disconjugate operators have been given in [10].
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[8] M. Bartušek, Z. Došlá, J. R. Graef, The Nonlinear Limit-Point/Limit- Circle Problem,
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[25] O. Došlý, A. Elbert, Integral characterization of the principal solution of half-linear
second order differential equations, Studia Sci. Math. Hungar. 36 (2000), 455–469.

[26] A. Elbert, On the half-linear second order differential equations, Acta Math. Hungar.
49 (1987), 487–508.

[27] A. Elbert, T. Kusano, Principal solutions of non-oscillatory half-linear differential
equations, Advances in Math. Sci. and Appl., 8 (1998) 745–759.

[28] U. Elias, Nonoscillation and eventual disconjugacy, Proc. Amer. Math. Soc. 66
(1977), 269–275.

[29] U. Elias, A classification of the solutions of a differential equation according to their
asymptotic behaviour, Proc. Roy. Soc. Edinburgh 83A (1979), 25–38.



25

[30] U. Elias, A classification of the solutions of a differential equation according to their
behaviour at infinity, II, Proc. Roy. Soc. Edinburgh 100A (1985), 53–66.

[31] U. Elias, Oscillation Theory of Two-Term Differential Equations, Kluwer Academic
Publishers, Dordrecht-Boston-London, 1997.

[32] L. Erbe, Oscillation, nonoscillation and asymptotic behavior for third order nonli-
near differential equations, Annali Mat. Pura Appl. 110 (1976), 373–391.

[33] L. H. Erbe, Q. Kong, B. G. Zhang, Oscillation Theory for Functional Differential
Equations, Pure and Appl. Math., 190, Marcel Dekker, New York, 1995.

[34] M. Gaudenzi, On the Sturm-Picone theorem for nth–order differential equations,
Siam J. Math. Anal. 21 (1990), 980–994.

[35] M. Gera, Uber das verhalten der losungen der gleichung x ′′′ + a(t)x ′′ + b(t)x ′ +

+ c(t)x = 0, c(t) ≤ 0, Acta Math. Univ. Comenianae XLVI-XLVII (1985), 189–
203.
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4 Résumé

The aim of the dissertation is to present main results published in the papers [D1]–[D12].
These results contribute to the asymptotic theory of the following ordinary differential
equations:

(1) Second order differential equations with p-Laplacian

Consider the nonlinear equation

(a(t)8p(x ′))′ = b(t)f (x) (4.1)

and the functional differential equation

(

a(t)8p(x ′)
)′

= b(t)f
(

x(g(t))
)

,

where the functions a, b are continuous and positive for t ≥ 0, 8p(u) = |u|p−2u with
p > 1, f is continuous on R such that f (u)u > 0 for u 6= 0, and g : [0, ∞) → R is a
continuous function satisfying limt→∞ g(t) = ∞.

These equations arise in the study of radially symmetric solutions of the nonlinear par-
tial differential equation with p-Laplacian. They are natural generalizations of nonlinear
equations with the Sturm-Liouville operator. When f (x) = 8q(x) (q > 1) and f (x) =

= 8p(x), (4.1) is called a quasilinear equation and a half-linear equation, respectively.
The integral conditions describing the asymptotic behavior of all nonoscillatory solutions
of (4.1) are given. Moreover, applications to the quasilinear equations and the half-linear
equations are given as well.

Our results in this direction generalize or complete the results of Cecchi-Marini-
Villari, Elbert, Elbert-Kusano, Mirzov, Mizukami-Naito-Usami, Philos, Potter, Tanigawa,
and others.

(2) Third order linear and nonlinear differential equations

We establish new results in the oscillatory and asymptotic theories of the third order
differential equation

x ′′′ + p(t)x ′ + q(t)f (x) = 0.
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Our results in this direction generalize or complete the results of Dolan, Erbe, Gregus,
Gera, Hanan, Jones, Lazer, Gaet.Villari, and others.

(3) Linear differential equations with the disconjugate operators

Consider the two-term linear differential equation

Lnx + p(t)x = 0

where n ≥ 3, p 6= 0, and Ln is the n-th order disconjugate operator

Lnx ≡
d

dt

1

an−1(t)
. . .

d

dt

1

a1(t)

d

dt
x

with continuous and positive real functions ai (i = 1, . . . , n) on [0, ∞). These equations,
sometimes called equations with quasiderivatives, enjoy a very rich structure of solutions.
A particular attention is devoted to the oscillatory and asymptotic properties of these
equations described in terms of the so-called property A and property B. In particular, the
equivalence theorem between both properties is proved.

Our results in this direction generalize or complete the results of Chanturia, Chanturia-
Kiguradze, Dzurina, Elias, Kiguradze, Kusano, Kusano-Naito, Kusano-Naito-Tanaka,
Ohriska, Švec, Trench, and others.

The dissertation is organized into three chapters:

Chapter 1: Differential equations with p-Laplacian – papers [D9, D10, D11, D12]

Chapter 2: Third order differential equations – papers [D1, D2, D3, D4, D5, D6, D7]

Chapter 3: Linear differential equations of n-th order – paper [D8].

The main contribution of the presented papers consists of the following topics:

(1) Possible types of nonoscillatory solutions of the second and third order differential
equations.

(2) Necessary and sufficient conditions ensuring the existence of zero-convergent so-
lutions and the existence of bounded/unbounded solutions.

(3) A description of the asymptotic behavior of all nonoscillatory solutions of (4.1)
and their quasiderivatives.

(4) Limit and integral characterizations of the principal solution of the half-linear
differential equations.

(5) Theorems on the equivalence between the properties A and B for the third and
higher order linear differential equations with quasiderivatives.

(6) Oscillatory properties for the third order linear differential equations.

(7) Sufficiency theorems for property A and property B for the third order nonlinear
differential equations.


