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1 Subject, methods and results of the
dissertation

The dissertation contains a collection of the published papers [D1]-{D12], which are
devoted to the asymptotic theory of ordinary differential equations of the second and
higher orders. In particular, we study asymptotic behavior of solutions of the second order
nonlinear differential equations with p-Laplacian, oscillatory and asymptotic properties
of solutionsof thethird order differential equationsand of thelinear differential equations
with quasiderivatives.

In the following sections we present employed methods and some main results pub-
lished in papers [D1]{D12].

1.1. Second order differential equationswith p-Laplacian

Results published in [D9, D10, D11, D12] are concerned with the asymptotic behavior of
solutions of the nonlinear differential equation

(@®)®@p(x')" = bt) f(x) (1.1)
and its special cases — the quasilinear differential equation
(@®)®@p(x")" = b(t)Py(x) (1.2
and the half-linear equation
(a@®)®,(x") =b(1)P,(x). (1.3

Throughout this chapter we assume that the functionsa, b are continuousfor ¢ > 0,
a(t) >0, b@)>0, &,u)=Iul’"u withp > 1, (1.4)

g > land f isacontinuous function on R such that f (u)u > Oforu # 0.
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We start with a short historical and bibliographical survey.
For p = 2, equation (1.1) becomes a equation with the Sturm-Liouville differential
operator
(a(®)x") = b@) f(x) (1.5

and (1.3) becomes the linear equation
(a®)x") =b(t)x. (1.6)

It is well known (see, e.g, [39]) that if (1.4) holds, then the linear equation (1.6) is
nonoscillatory. In[60], acomplete anaysisof the asymptotic behavior of solutionsof (1.6)
has been presented. Later such resultshave been extendedin[12, 13, 14, 15, 19, 58, 59, 65]
in many directionsto the nonlinear equation (1.5). In some of these quoted papers, the case
of b eventually negative has been considered. A survey of the oscillatory and asymptotic
theories of equation (1.5) can also be found in the recent monograph [1].

Quasilinear equation (1.2) has been extensively considered in the last years, see, e.g.,
[19, 64, 76]. Solutions of (1.2) can be examined by interpreting (1.2) as a system of the
Emden—Fowler type for the vector (x, y) = (x, a®,(x")) given by

X = %{%) e (y)

Y = b(1) @4 (),

where p* denotes the conjugate number of p, i.e.

(1.7)

1 1
pr=—"L_ o Z4+==1
p—1 p p*

For thisreason, equation (1.2) is sometimes called ageneralized Emden-Fowler equation.
We refer to the book by Mirzov [61] where the uniqueness, continuability, existence, and
asymptotic behavior of solutionsof (1.7) have been investigated. Other interesting results
concern the special case p = ¢, i.e. the half-linear equation (1.3), see e.g. [26, 27].

Such studies are essentially motivated by the dynamics of positive radia solutions of
reaction-diffusion problems modelled by the nonlinear elliptic equation

—div(e(|Vul)Vu) + 1f(u) =0 (1.8)

where « : (0,00) — (0, c0) is continuous and such that §(v) := a(|v|)v is an odd
increasing homeomorphism from R into R, A is a positive constant (the so called Thiele
modulus), and f represents the ratio of the reaction rate at the concentration u to the
reaction rate at concentration unity (see e.g. [20]). If «(|Jv]) = |v|P~2, then the differential
operator in (1.8) isthe p-Laplacian A ,(u) = div(|Vu|P~2Vu) and (1.8) reducesto (1.1).

The aim of papers[D9, D10] isto study the asymptotic behavior of solutions of (1.1)
and (1.2). Thistask is accomplished by introducing an a-priori classification of solutions
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of (1.1) which isanatural extension of the well-known classification stated for the linear
case.

Asusual, by asolution of (1.1) we always mean a continuously differentiable function
x such that a® ,(x") has a continuous derivative satisfying (1.1). Following I. Kiguradze
[47, Definitions 12.4 and 12.5], a nontrivial solution x of (1.1) is said to be a singular
solution of the first kind of (1.1) if thereexists T < oo suchthat x(r) = 0 fort > T,
and a solution x of (1.1) is said to be a singular solution of the second kind of (1.1) if
there exists T < oo such that lim;_.7_ |x(z)| = oo. For brevity, denote by S; (S2) the
set of all singular solutions of the first (second) kind. Observe that the problem whether
S1 = @ isclosely related to the uniqueness problem with respect to the initial conditions.
A nontrivial and nonsingular solution of (1.1) issaid to be a proper solution.

We say that a proper solution x of (1.1) defined on («,, oo) is either of classM™ or
of class M~ according to whether x (7)x'(¢) is eventually positive or x(¢)x'(t) is negative
forevery t > ay, i.e

M = {x proper solution of (1.1) : 3t, > ay : x(1)x'(t) > Ofort > 1.},
M~ = {x proper solution of (1.1) : x(¢)x'(t) < Ofort > a,}.

As for the singular solutions and solutions in classes M, Mt for the quasilinear
equation (1.2), theresults of [17, 18, 63] yield the following.

Theorem A. The following holds for equation (1.2):

@ Ifp=gthenS1 = S, =@, M~ # @ and M* £ @.

(b) If p<gthenS1 =0, S #dand M~ # .

(€) If p>gqgthenS1 # 0, So =@ and M # @.
Remark 1.1. When p > ¢, theclass M~ can be empty. For instance, this happens when
p=2a)=11<gq < 2andliminf,_, t2b(t) > 0, seee.qg. [47, Corollary 17.3].

When p < ¢, the class M™ can be empty. For instance, this happens when p = 2,

a(t) =1,q > 2andliminf,_ . t9b(¢t) > 0, seee.g. [47, Corollary 17.4]).

In the sequel, we will extend Theorem A to equation (1.1), and wewill give conditions
which ensure that the classes M~ and M* are not empty when p > ¢ and p < ¢,
respectively.

As in the papers [12, 13, 14, 15, 19, 59, 65], both classes M™, M~ can be divided,
a-priori, into the following four subclasses, which are mutually digjoint:

My ={xeM : limx() =, #0},
—0o0

My ={xeM : lim x(t) =0},
—0o0

M}f ={xeM': limx() = £, < oo},
1—00

I\\/JI;Fo ={xeMt: llim |x(t)| = oo}.
—00
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In the following sections we are going to characterize these classes in terms of certain
integral conditions and, similarly to the linear case, to show that the convergence and/or
divergence of the two integrals

J1= TleOO/OT cpp*(flt))cbp* (fol b(s)ds) d,

Jy = TleOO/OT q>p*(a(1t))q>p*(/th(s)ds) dr,

completely characterize the above four classes. We remark that in the linear case J1 = I
and J> = I». Inthefollowing we will aso use the notation

J3=/ooq>,,*<i)dz, J4:/oob(t)dt.
0 a(r) 0

We point out that a different approach and classification of solutions of (1.2) have
been used in the recent papers [64] and [76] under the assumptionsa(r) = 1 and J3 <
< 00, respectively. As we will see, such conditions automatically reduce possible types
of solutions of (1.2).

Next results describe solutions in the classes M~ and M™ in terms of the integrals
J1, J2 without any additional conditions on the nonlinearity f. Our approach is based on
the Tychonov fixed point theorem as well as on the asymptotic integration of (1.1).

Theorem 1.1 ([D10Q]). Eq.(1.1) hasa solution in the class M if and only if J> < oo.

Theorem 1.2 ([D10]). If J1 < oo and J2 < oo, then equation (1.1) has a solution x of
(1.2) such that the limit
lim *)

t—o0 00 1
f[ q)p* <m> ds

exists, is finite and is different from zero.

(1.9)

Theorem 1.3 ([D10]). Eq. (1.1) has a solution inthecla$M§ if and only if J1 < oo.

The next two theorems have been proved using acompl ete asymptotic characterization
for the half-linear equations and on the existence of suitable upper and lower solutionsfor
(1.2), see[D10Q].

Theorem 1.4 ([D10]). Assume

lim sup f )

1.10
o @p) (1.10)

Then the following holds:
(@ Eg.(1.1) hasno solutionin the class S;.
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(b) Eg.(1.1) hassolutionsintheclassM ™.

(c) If J1 = o0 and Jo < oo, then every solution x of (1.1) inthe classM ™ tendsto a
non-zero limitast — oo, i.e, M~ = Mj.

(d) Eg.(1.1) has solutions in the classes M; and M if and only if J; < oo and
Jo < 0.

Theorem 1.5 ([D10]). Assume

limsup f

<
|u|— 00 @, ()

(1.12)

Then the following holds:
(& Eg.(1.1) hasno solution in the class S».
(b) Eg.(1.1) hassolutionsinthe classM ™.
() If J1 < oo, then every solution x of (1.1) in the class M™ is bounded, i.e.

MT = M}, # 0.
(d) If J1 = oo, then every solution x of (1.1) in the class M is unbounded, i.e.
M+ = MZ, # .

Corollary 1.1 ([D10]). Thefollowing holds for equation (1.1):
(i) If Jy =00 and J> = oo, then M, = ¢, M; = ¢. In addition, if (1.10) is satisfied,

then M~ = M, # ¢, and if (1.11) is satisfied, then M+t = M # 0.

(i) If J1 = oo and J» < oo, then M, = #. In addition, if (1.10) is satisfied, then
M~ =My # ¢, My = ¢, andif (1.11) issatisfied, then Mt = M}, # 0.

(iii) If J1 < oo and Jo = oo, then M, = . If in addition (1.10) is satisfied, then
M~ = M, # 9, andif (1.11) issatisfied, then M = M}, # ¢ and M, = 2.

(iv) If J1 < oo and J2 < oo, then both classes M; and M, are nonempty. In addition,
if (1.11) is satisfied, then M™ = M} # @ and M, = 0.

Remark 1.2. For the quasilinear equation (1.2), i.e. for f(u) = ®,(u), (1.10) reduces to
the condition p < ¢ and (1.11) reduces to the condition p > g¢.

For the linear equation (1.6), Theorem 1.5-(c),(d) reduces to Theorem 3 in [60],
and Corollary 1.1 to Theorem 2 in [12]. For equation (1.5), Theorem 1.4-(b), (d) gives
Theorems 6,8in[12].

Our main results for equation (1.2) concern the following problems:
(1) Reciprocity principle and asymptotic behavior of quasiderivatives of solutions.

(2) Uniqueness problemintheclassM .
The asymptotic behavior of quasiderivatives of solutions of (1.2) can be investigated

by the so called reciprocity principle. This principle extends to (1.3) aclassical result of
Potter [71] on the oscillation of the second order self-adjoint linear equation (1.6), and
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was later used in [12, 13] for the asymptotics of nonoscillatory linear equation (1.6). It

links solutions of (1.2) to those of a suitable associated equation and enables, by asimple

way, to describe the qualitative behavior of solutions of (1.2) and their quasiderivatives.
Let x beasolution of (1.2) and let us denote the quasiderivative x! of x by

M) = a()@, (' 1)).

Then z = x* isasolution of the reciprocal equation of (1.2)

1 N1
(chq*(z )) = ) @ (112)

This equation follows from (1.2) when a is replaced by 1/®,«(b) and b by 1/® ,«(a).
Consequently, the integral Js for (1.2) playsthe samerole as J4 for (1.12) and vice versa;
analogously J4 for (1.2) plays the same role as J3 for (1.12). Similarly, for (1.12) the

integrals J1, J> become
. ! 1
Js = TleOO/O b(t) c1>q<fo qu*(a(s))ds)dt,

. r d 1
Jo = TleOO/O b(1) c1>q</t d),,*(a(s))ds>dt,

T

respectively.
Following the classification used in [64, 76], we distinguish these types of solutions x
of (1.2):

Type (1) lim x(1) =0, lim @) =0;
Type (2) lim x(1) =0, lim @)y =1 <0
Type (3) lim x(1) = ¢ >0, tir&x[l](t) =1 <0;
Type (4) tir?ox(t) =c >0, ;|_|>To xH@#) =1 > 0
Type (5) lim x(1) = ¢ >0, tir&x[l](t) = 00;
Type (6) lim x(1) = oo, lim 2@ = ep;
Type (7) lim x(1) = oo, tirgoxm(t) = 00.

Theorem 1.6 ([D10]). The following holds for equation (1.2):
(@) Let p <gq.Everysolutionin M~ isof Type (1) if and only if Jo = oo and Jg = oo.
(b) Eq.(1.2) has solutions of Type (2) if and only if J5 < oc.
(¢) Egq.(1.2) hassolutions of Type (3) if and only if J2 < oo.
(d) Eq.(1.2) hassolutionsof Type (4) if and only if J; < oo and Js < oo.
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(e) Eg.(1.2) hassolutions of Type (5) if and only if J1 < oo and J5 = oo.
(f) Eg.(1.2) has solutions of Type (6) if and only if J; = co and J5 < oo.
(9) Let p > q.Everysolutionin M isof Type (7) if and only if J; = oo and J5 = oc.

Remark 1.3. In [76], the same problem has been studied under the assumption J3 < co.
In [64], the case a(r) = 1 is considered which represents the case J3 = oo.
Theorem 1.6 gives
eincase J3 < oo Theorems 3.1, 3.2, 3.3, 3.4, 4.2, 4.5 and 4.6 of [76];
eincasea(t) = 1 Theorems 2.2, 2.3, 2.4, 2.5, 3.6, 3.7 and 3.8 of [64].

Next result concerns the uniquenessin M~ and has been proved in [D9].

Theorem 1.7 (Uniquenessin M ™). Consider equation (1.2) with p < g.
For any (7o, xo) € [0, co) x R\ {0}, there exists a unique solution x of (1.1) in the
class M~ such that x(zg) = xo if and only if

o 1
———— +b(t))dt =0 1.13
fo <cI>p*(a(t)) ) (113
is satisfied.
Thisresult has been later used in[D12] to prove the limit characterization of principal
solutions of half-linear equations.

A particular attention among quasilinear equations is paid to the half-linear equation
(1.3). The half-linear caseis characterized by the fact that every solution of (1.3) isproper
and defined on thewholeinterval [0, co). It isstraightforward to verify that solutionsx in
the class M~ are positive decreasing or negative increasing in the whole interval [0, co).
In addition, the homogeneity property holds, that is, if x isasolution of (1.3), then so is
Ax for any constant .

In the nonoscillation theory of the half-linear equations, an important roleis played by
the principal solution. This concept has been introduced independently by Elbert—K usano
[27] and by Mirzov [62]. In papers [D12], [11] we have proved the limit and integral
characterizations of the principal solutions of (1.3) in the case when b does not change its
sign.

It iswell known that if the linear equation (1.6) is nonoscillatory, then there exists a
solution u of (1.6), called the principal solution at oo, that is uniquely determined up

to a constant factor by one of the following conditions (in which x denotes an arbitrary
solution of (1.6) linearly independent of «):

u(t) B

tl—l>To % =0; (1)
u'(t)  x'(1) .
a0 < 0 for larget ; (2)

e dt
/ a2ty (a)
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Roughly speaking, property (1) means that the principal solution of (1.6) isthe smallest
solution in a neighbourhood of infinity; property (m») is connected with the associated
Riccati equation, and property (m3) is related to the Wronskian identity and to the so
called reduction of order formula. The notion of the principal solution was introduced by
W. Leighton and M. Morse [57] in studying positiveness of certain quadratic functionals
associated with (1.6). It was later characterized by means of the properties (m1)-(mt3) by
P. Hartman and A. Wintner, see, e.g., Chapter 11in [39].

Recently, a considerable effort has been devoted to extend the notion of the principal
solution to half-linear equation (1.3) (see, e.g., [25, 27, 62, 63]). In [27, 62], the principal
solution of (1.3) has been defined by the Riccati approach. It is shown that, when (1.3) is
nonoscillatory, among all eventually nonvanishing solutions

x'(1)
wel) =@, (o)
of the Riccati equation associated with (1.3), there exists one, say w,,, that is continuable
to infinity and minimal in the sense that any other solution w, of the Riccati equation that
is continuable to infinity satisfies w, (1) < w,(¢) for large ¢. The corresponding solution
u of (1.3) isthen called principal. Thisdefinition can be formulated in the following way.

Definition 1.1. [27, 62] A nontrivia solution « of (1.3) issaid to bethe principal solution
of (1.3) if for every solution x of (1.3) suchthat x # Au , A € R,

u'(t)  x'(1)
<
u(t) x(1)

for largez. (1.19)

The set of principa solutions is nonempty and, obviously, principal solutions are
determined up to a constant factor. Since the sets M—, M™ of (1.3) are nonempty, any
principal solution necessarily belongs to M—. As we will show later, in general, the
converse does not hold, i.e. there exist nonprincipal solutionsinthe classM ™.

As pointed out in [25], the ssmplest and most characteristic property (mt1) of the
principa solutions to be the “smallest solutions in a neighbourhood of infinity” has been
until now aopen problem for (1.3) . Our following result gives the answer to the question
posed in [25], by showing the equivalence between properties (1) and (7t2) in the half-
linear case.

Theorem 1.8 ([D12]). A solutionu of (1.3) isprincipal if and only if

lim “© _ (1.15)

t—00 x([) o
for any solution x of (1.3) suchthat x # Au, A € R.

Principa solutions of (1.3) can be completely characterized by the following integra
criterion which yieldsin the linear case the property (m3).
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Theorem 1.9 ([D12]). A solutionu of (1.3) isprincipal if and only if
o dt
= 0. 1.16
/ @+ (alt))u?(t) (1.1

In [25], a different integral characterization of principal solutions for (1.3) has been
introduced, as the following theorem shows.

Theorem B. The following holds for equation (1.3):
(@ If p>2andu isaprincipal solution of (1.3), then
o0 /
/ windt (117)
a(u?(t)®, u'(1))

(b) If p € (1, 2] and there exists a solution « of (1.3) such that (1.17) holds, then u is
a principal solution of (1.3).

Remark 1.4. The above result has been stated in [25] for a more general case by assu-
ming, instead of () > 0 on [0, co), the condition “(1.3) is nonoscillatory and u is its
solution such that u’(r) # 0 eventually”. The question whether the divergence of (1.17)
equivalently characterizes the principa solutionswhen b(¢t) > 0, isaso posedin[25]. In
[D12], we have given examplesillustrating that this conjecture is not true.

When b(t) < 0, theintegral characterization of the principal solution is more compli-
cated. Thisisdueto the fact that no of properties (1.16), (1.17) characterizes the principal
solutionin general, see [11].

Some problems solved for equation (1.1) have beeninvestigated in [D11] for nonlinear
differential equations with deviating argument

(a@)@,(x")) = b(e) f(x(g())) (1.18)

where (1.4) isassumed, f isacontinuous function on R satisfying f (u)u > 0for u # 0,
and g : [0, o0) — R isacontinuous function satisfying lim;_, o, g(t) = oc.

Equation (1.18) exhibits phenomena which are different in comparison with equation
(1.1) without a deviating argument. For instance, every solution of (1.1) is nonoscillatory,
but the deviating argument can produce the oscillation of someor of all solutionsof certain
equations of type (1.18) (see, e.g., [54], [33)]).

The aim of [D11] is to establish sufficient conditions for the existence of monotone
solutions of (1.18) approaching zero ast — oo. Such solutions are often called decaying
nonoscillatory solutions and have been deeply studied in the literature. We refer to [70]
and [54], where the particular case of (1.18) with a(r) = 1 has been considered. Other
interesting contributions can be found in the recent book [33] and in the references
contained therein.

Some of our results hold without any additional conditionson g: we have proved that
Theorems 1.1, 1.2 and 1.3 remain to hold for (1.18), see Theorems 3, 5and 6 in [D11].
However, the delayed argument sometimes generates a different situation than it occurs
for the corresponding equation without delay, as the following results illustrate.
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Theorem 1.10 ([D11]). Assume that g iseventually nondecreasing and g(r) < t eventu-
ally. If conditions

t 1 t
limsu D | —— ) D+ b(t)dr)d 1 1.19
Hoop/g(t) p(a(s)) p(/ (1) dr)ds > (1.19)
and ®
Je¢ > 0 such that p((b;) <1 for ju| < ¢ (1.20)
u

are satisfied, then (1.18) hasno solution in the class M.

Corollary 1.2([D11]). Assumethat g iseventually nondecreasingand g(¢) < ¢ eventually.
If the conditions J; = oo, (1.19) and (1.20) are verified, then all bounded solutions of
(1.18) (if any) are oscillatory.

Theorem 1.11 ([D11]). Eq. (1.18) has decaying nonoscillatory solutions, i.e. M, # ¢, if
any of the following condition is satisfied:

(@ J2 < o0, g(t) < teventually;
(b) f isnondecreasing, J3 < oo and

. T g 1
T||—>moof0 b(t) f (fg(l) CDP*(E) ds) dt < 0.

Notes. In [D12], the notion of the principal solution and its characterizations have been
extended to the nonlinear differential equation (1.1) by defining the concept of the minimal
set. Thelimit and integral characterizationsfor the half-linear equation (1.3) withb(¢) < 0
have been proved in [11].

The relationships between integrals J1 and Jg (and similarly between J, and Js) has
been proved in [24] where applications to equations (1.3) and (1.2) with b(t) < 0 have
also been made.

1.2. Third order differential equations
Results published in [D1]-{D7] are concerned the asymptotic and oscillatory behavior of
solutions of the third order linear and nonlinear differential equations.

Many authors have studied the oscillatory, nonoscillatory and asymptotic behavior of
the third order linear differential equation in the normal form

X" (t) + p(Ox' (1) + g()x(t) = 0 (1.21)

where p, g are real continuous functionsfor ¢+ > 0. Among the numerous results dealing
withthissubject, werefer to thebooksby Gregus[36], Kiguradze-Chanturia[47], Swanson
[75] and the references contained therein.
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Wesay that x isan oscillatory solution of (1.21) if it hasarbitrary large zeros. Otherwise
this solution is said to be nonoscillatory. Equation (1.21) is said to be oscillatory if it
has at least one nontrivial oscillatory solution, and nonoscillatory if al its solutions are
nonoscillatory.

Some authors (see, e. g., [34, 38]) consider third order differential equations of the
form

(r()x'(1))" 4+ q)x() =0,
(r)x" (1)) + q(®)x(1) = 0.
A prototype of these equationsisthe binomial equation

" £qt)x =0 (EL)

where ¢ is a positive continuous function for + > 0. It is well known that there is an
analogy between the space of solutions of (E+) and (E—). For instance, by using the
notion of an equation of the class| and Il introduced by Hanan in [38], it is easy to show
that (E+) is nonoscillatory if and only if (E—) is nonoscillatory. Another result in this
directionisgivenin[78] (see dso [74]) whereit is proved that if there exists A > 0 such

that
(0,0)
/ 1> q(t)dt = oo,

then (E+) have both oscillatory and nonoscillatory solutions. In addition, every nonos-
cillatory solution x of (E+) tendsto zero ast — oo and satisfies, for al large ¢, either
the inequalities x(r) > 0, x'(r) < 0, x”(r) > 0 or the inequalities x () < 0, x'(¢) > 0,
x"(t) < 0, while every nonoscillatory solution of (E—) tends to infinity ast+ — oo and
satisfies, for large ¢, either x(r) > 0, x'(r) > 0, x”(t) > 0or x(r) < O, x'(r) < O,
x"(t) < 0. Some authors refer to this property of (E+) as the property A and of (E—)
as the property B. Both properties have been extended in severa directionsto linear and
nonlinear equations of n—th order, which will be treated later.

Another basic classification concerning third order linear differential equaitons has
been employed, in an implicit form, by Sansone [ 73] and later on has been formalized by
Hanan [38].

Definition 1.2. Equation (1.21) is said to be of Class | if every solution x for which
x(a) = x'(a) =0, x"(a) > 0(a > 0) satisfiesx(r) > 0on (0, a).

Equation (1.21) issaid to beof Classl| if every solutionx for which x(a) = x'(a) = 0,
x"(a) > O satisfiesx () > 0on (a, 00).

The terminology (1.21) being of Class | or Class Il plays an important role in the
study of the conjugate points (zeros) for the solution of the linear equation (1.21). In the
literature, there are numerous papers dealing with this classification: we refer to the books
[36, 75] for an extensive bibliography.

In[D1, D7], we consider the differential equation
Y +291)y" +(q' (1) +r)y =0 (1.22)
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where
g € CY([0,00),R), r e C([0, ), R)

(functions ¢, r may change its sign).
If () = 0 we have the self-adjoint equation (known as Appel’s equation)
") +2g0)x' ) +q' (t)xt) =0 (1.23)
and all its solutions are given by
X = €123 + c22122 + €325, (1.24)

where z1, z2 are linearly independent solutions of the second order linear equation

Z'(t) + :—ZLq(t)z(t) =0. (1.25)

In [41] Jones described the types of possible bases for the solution space of (1.22)
with respect to the possible number of oscillatory solutionsin agiven basis.
In view of (1.24), the self-adjoint equation (1.23) has the following properties:

e If (1.25) has an oscillatory solution, then (1.23) has bases consisting of 0, 1, 2 or 3
oscillatory solutions, (see e.g. [36, Theorem 2.52));

e If al solutions of (1.25) are bounded, then equation (1.25) has all solutionsin L? if and
only if equation (1.23) has all solutionsin L2.

We seek for the possibility of perturbing (1.23) to (1.22) in such away that these properties
arepreserved. Frothispurpose, in[D1] we have studied the problem when equations (1.22)
and (1.23) are asymptotically equivalent.

Let X and Y be the space of all solutions of (1.22) and (1.23) on [0, co), respectively.
The continuity of coefficients of equations (1.22), (1.23) ensures X # @, Y # ¢ and thus,
X, Y arelinear spaces of the dimension three.

Theorem 1.12 ([D1]). Assume that
/ lr(t)|dt < oo (1.26)
0

holds and that z1, z> are bounded solutions of (1.25) with z1(1)z5(1) — z5(t)z2(t) = 1.
Thenthemapping V : Y — X defined by

(Vy)@) = y(@) —/ K(t,s)r(s)y(s)ds, (1.27)
where ” ”
z71(f) zo2(t
K(,s) = 1.28
CI=] 46 2 (129
is a one-to-one mapping and
Jim fx(@) =y =0 (1.29)

for every x(¢r) € X and y(¢t) € Y suchthat x(r) = Vy(z).
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Remark 1.5. Equations (1.22) and (1.23) satisfying (1.29) are said to be asymptotically
equivalent. Using Theorem 1.12 and applying the asymptotic properties of (1.25), we can
obtain asymptotic properties of solutions of (1.22). For example, if all solutions of (1.25)
convergeto zero ast — oo and (1.26) holds, then all solutions of (1.22) converge to zero
ast — oo.

Under a stronger assumption than (1.26) the following result holds.

Theorem 1.13. Suppose that every solution of (1.25) is bounded on [0, oo) and

o0 o0 2
/ (f Ir(s)| ds) dt < oo. (1.30)
0 t

f oo(x(t) — y())?dt < o0 (1.31)
0

holdsfor every x € X andy € Y suchthatx = Vy,whereV : ¥ — X isdetermined by
(1.27). In particular, every solution x of (1.23) isin L2 if and only if every solution y of
(1.22) isin L2.

Then

Now we show some applications of Theorems 1.12 and 1.13. Our first result concerns
the types of bases which are possible for the solution space of (1.22) with respect to the
number of oscilatory solutionsin agiven basis.

Lemmadl.1([D1]). Assume(1.26). Letg(r) > Obesuchthatq, ¢~ arebounded and there
exists y # 0 such that g7 iseither convex or concave. Then (1.22) has a nonoscillatory
solution y(¢) such that liminf,_, . y(r) > 0. Furthermore, every solution of (1.22) is
bounded.

Theorem 1.14 ([D1]). Let equation (1.22) be of Class | or Class I1, oscillatory and let
the assumptions of Lemma 1.1 be fulfilled. Then the solution space of (1.22) has bases
consisting of exactly O, 1, 2 or 3 oscillatory solutions.

Our second application concerns the problem of the existence of the square integrable
solutions of (1.22). This problem has been initiated by H. Weyl (1910) for the second
order equation (1.25), and later it has been deeply developed for the self-adjoint 2nth
order linear differential equations in the connection with the deficiency index of the
associated differential operators.

As we mentioned above, the self-adjoint equation (1.23) has the following property:
Let all solutions of (1.25) be bounded. Equation (1.25) has all solutionsin L? if and only
if the Appel’s equation (1.23) has all solutionsin L2.

The next theorem extends this property for the perturbed equation (1.22).

Theorem 1.15 ([D7]). Let all solutions of (1.25) be bounded.

(@) If (1.26) holds and all solutions of (1.25) belong to L2, then all solutions of (1.22)
belong to L2.
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(b) Let (1.30) hold. Equation (1.25) hasall solutionsin L? if and only if equation (1.22)
has all solutionsin LZ.

Remark 1.6. If al solutions of (1.25) belong to L2, then equation (1.25) is oscillatory
(seee.g.[8, Theorem 5.1]). Hence, equation (1.23) has an oscillatory solution. Conditions
ensuring that all solutions of (1.25) are bounded and belong to L2 can befound in e.q.[8].

In [D2]—[D5], we study the oscillatory and asymptotic properties of solutions of the
third order linear equation in the form

(ﬁ(%) X)) +q@x) =0 (L)
and of its adjoint equation
(57 ®) ) —awrw =0 L)
where
r,p.q € C%[0,0),R), r(t)>0, p(t) >0, q(t) >0 on [0, co). (1.32)

When thefunctions p and/or r do not have acontinuousfirst and/or second derivative, then
(L) may be interpreted as a first order differential system for the vector (x[9, x[1, x[2])
given by

1 1,1 1
P (U | B _(_x/> = = (x1y’,
r pAr p

where x isasolution of (L). The functions x[!! are called the quasiderivatives of x.
Following Kiguradze-Chanturia[47], we introduce the following definitions.

Definition 1.3. A solution x of (L) issaid to be aKneser solutionif fori =0, 1
T oxit @y <0 fore > 0. (1.33)
A solution u of (L*) issaid to be astrongly increasing solution if fori = 0, 1
uW()u™ @) > 0 forlarger. (1.34)

Eqg. (L) is said to have the property A if every solution x of this equation is either
oscillatory or satisfiesfori = 0, 1, 2

IxUl(#)| | 0 asr — oo. (1.35)

Eqg. (L*) is said to have the property B if every solution u of this equation is either
oscillatory or satisfiesfori = 0, 1, 2

lul ()] 1 00 ast — oo, (1.36)

where the notation y(z) | O and y(¢) 4 oo mean that y is monotone decreasing to zero as
t — oo Or monotone increasesing to infinity ast — oo, respectively.
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It is well-known (see e.g. the book by Elias [31]) that (L) is oscillatory if and only
if (L*) is oscillatory. It follows from the results of Hartman/Wintner (see [39], p.506)
and of Kusano et al.[50, Lemma 2] that equation (L) has Kneser solutions and (L**) has
strongly monotone solutions.

If (L) has property A, then every nonoscillatory solution is a Kneser solution and if
(L*) has property B, then every nonoscillatory solution is a strongly monotone solution.
The following questions arise for equation (L):

(i) Do the converse statements hold?
(ii) Doesthere exist arelationship between the property A and property B?
(iii) Doesthereexist arelationship between the property A [property B] and oscillation?

In the sequel we give an affirmative answer to these questions, and we state the oscillation
and nonoscillation criteriafor (L).

We start with the basic property of linear equations with quasiderivatives, which is
often used in our later investigation.

Theorem 1.16 ([D2]). Equation (L) isof Class| and (L*) isof Class 1.

Using this property we can describe the structure of the solution space of equations (L)
and (L*). From aresult in [21], this space always contains a two-dimensional subspace
either of oscillatory solutions or of nonoscillatory ones. The following holds:

Theorem 1.17 ([D2]). If equation (L) has oscillatory solution, then the solution space of
(L) has a basis consisting of exactly two or three oscillatory solutions.

If equation (L*) has oscillatory solution, then the solution space of (L*) has a basis
consisting of exactly two oscillatory solutions.

Using Theorem 1.16 we also get the following oscillation and nonoscillation criteria.
For this purpose, the following notation is used:

o0 o0 t
I(ui>=/ ui (1) dt, 1<ui,u,->=/ ui(t)/ uj(s)dsdt, i,j=1,2
0 0 0
oo t s
I(ui,uj,ug) =/ ui(t)/ uj(S)/ u(t)ydrdsdt, i,j, k=123,
0 0 0
whereu;,i = 1, 2, 3, are continuous positive functions on [0, c0).
Theorem 1.18 ([D2]). Let one of the following integrals

I(q,r,p), I(p,q,r) 1@ p,q)
be convergent. Then (L) is nonoscillatory.

Theorem 1.19 ([D2]). Let one of the following conditions be satisfied:
(i) I(p)=1(r)=1(q,r) = o0;
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(i) 1(q) =1(p) =I1(r, p) = o0;
(iii) 1(r)=1(q) =1(p,q) = oo.
Then (L) is oscillatory,

Our main result is the following theorem which has been proved in [D4].

Theorem 1.20 (Equivalence Theorem). Eq. (L) has property A if and only if (L) has
property B.

The above results yield the following result.

Corollary 1.3 ([D5]). The following assertions are equivalent:
(@ Eg. (L) hasproperty A.

(b) Eq. (L*) has property B.

(c) Eq. (L) isoscillatory and we have

I(q,p.r)=1(r.q,p)=1(p,r,q) = . (1.37)
(d) Eq. (L*) isoscillatory and (1.37) holds.
In [D6], we consider the third order linear differential equation
x" +qt)x' £rt)x =0 (et)

and the corresponding nonlinear one

" +qgt)x’ £r@t)f(x) =0 (n£)
where
g, r arecontinuousfunctionsfort > 0, ¢(t) <0,r(t) >0 (1.38)
and
f isacontinuousfunctionin R such that f(u)u > Oforu # 0. (1.39)

By asolution of (n4) we mean athree times differentiable function x satisfying (n+)
for larger and sup {|x(¢)| : t > T} > O for every T sufficiently large. For the results
concerning continuability to infinity of solutions of (n+), we refer the reader to [37, 47].
A nontrivia solution of (e+) [(n4)] issaid to be oscillatory or nonoscillatory according
to whether it does or does not have arbitrarily large zeros. Equation (et+) [n+] is caled
oscillatory if it has at |east one oscillatory solution and nonoscillatory otherwise, i.e. if all
its solutions are nonoscillatory.

Equation (e+) issaid to have property A if every solution of (e+) either is oscillatory
or satisfies the conditions

x()x'(t) <0, x(t)x"() >0 fort >0 (1.40)
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lim x(t) = lim x'(¢t) = lim x"(¢t) = 0.
I—0o0 =00 =00

Equation (e—) issaid to have property B if every solution of (e—) either is oscillatory or
satisfies the conditions

x()x'(t) >0, x()x"(t) > 0 foral larget (1.41)
lim [x(0)] = lim |x'(®)| = lim |x"(¢)] = o0.
t—00 t—00 =00

We recall that a solution x of (e+) which satisfies condition (1.40) is a Kneser solution
of (e+), and similarly a solution x of (e—) which satisfies (1.41) is a strongly monotone
solution of (e—). We aso recall that (e+) always has Kneser solutions and (e—) always
has strongly monotone solutions (see, e.g, [39] and [56]). Similar definitions hold for the
nonlinear equations (n+). In this case condition (1.40) holdsfor larget.

For thelinear equations, therel ationship between the oscillatory solutionsand asympto-
tic behavior of nonoscillatory ones is often considered. In particular, in the quoted paper
[56], Lazer proved the following:

Lazer Theorem. Assumeq(r) < Ofor ¢ > 0.

(@ Equation (e+) isoscillatory if and only if every nonoscillatory solution x of (e+) is
a Kneser solution and lim; _, o0 x’(¢) = lim;_, o0 x”(¢) = 0.

(b) If equation (e—) is oscillatory, then every nonoscillatory solution x of (e—) is a
strongly monotone solution and lim;_, oo |x(#)| = lim;_ o0 |X'(2)| = o0.

Motivated by equationswith constant coefficients, Lazer posed the following question
(see [56], p.444): Does every nonoscillatory solution of (e+) tend to zero as ¢ tends to
infinity when (e+) is oscillatory?

In the special case when ¢ = 0, this conjecture was proved by Gaet. Villari in
[78] and later by Lazer ([56, Th.1.5]) and Gregus ([36, Th.3.12]) under some additional
assumptionson ¢, r. In particular, Gregus proved the equival ence between the oscillation
and property A for (e+) provided ¢ € C([0, o0)). Gera[35] has proved the converse of
the Lazer Theorem (b), i.e., if every nonoscillatory solution of (e—) isastrongly monotone
solution, then (e—) isoscillatory.

Our next result gives a complete positive answer to the Lazer conjecture, by showing
that it istrue without any additional condition.

Theorem 1.21 ([D6]). Assume (1.38). Then,
(@) Equation (e+) isoscillatory if and only if (e+) has property A.
(b) Equation (e—) isoscillatoryif and only if (e—) has property B.
The obtained results in the linear case are interesting themselves by virtue of their

necessary and sufficient character, but they are useful also in the study of the nonlinear
eguations.

Theorem 1.22 ([D6]). Assume (1.38), (1.39) and liminf ;|- o f(u)/u > O.
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(@) If thelinear equation

Y'H+q®)y +upr)y=0
isoscillatory for every 1 > 0, then (n+) has property A.
(b) If thelinear equation
"

YW 4+q)y —pur)y=0
isoscillatory for every i > 0, then (n—) has property B.

Notes. Applications of the Equivalence Theorem to the nonlinear third order differential
eguations with quasiderivatives has been given in [D5] and to the nonlinear differential
equations with a delay in [9]. Further contribution about the asymptotic behavior of
solutions of the nonlinear third order differential equations can be found in author’s
papers |3, 4, 5, 6].

1.3. Linear differential equations of n-th order
Consider the two-term linear differential equation
L,x+ pt)x=0 (1.42)

where p(t) # 0 is continuous on ¢ € [0, c0) and L, is the disconjugate differential
operator

_d 1 d1d

T drapa()draynde

witha;(t) > 0(G = 1,..., n), a; € C" ([0, 00)). These equations, sometimes called
equations with quasiderivatives, enjoy a very rich structure of solutions and they are the
natural generalization of the binomial equations

n.x

x™ 4+ p()x = 0.

By the result of Trench [77], the disconjugate differential operator L, can bewrittenin a
canonical form, that is,

1d 1 d 1 d 1
b, dt b,_1(t)  dt by(¢) dt bo(t)x

L,x

such that the functions b;(r) > 0 (i = 0,1,2,...,n) are continuous, | b =00, (i =
=0,...,n — 1) and determined up to positive multiplicative constants with the product
1. The explicit formulas for the functions b; depend on the convergence or divergence
of theintegrals [ a;. In [D3], we have investigated the third order differential operator
L3, the canonical representation of L3, and the relations between the corresponding linear
equations.

Oscillatory and asymptotic properties of solutionsof (1.42) areusually described by the
property A and property B. Werefer to the recent papers[16, 23, 28, 29, 30, 48, 50, 53, 68]
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andthebooks[31, 47], where an extensive bibliography on thistopic can befound. Usually,
it has been assumed that L,, isinthe canonical form. Thisfact impliesthe special structure
of the set of nonoscillatory solutions, see e.g. [47, 53, 50].

Our main contribution in this field is the generalization of the Equivalence Theorem
1.20 to higher order equations with quasiderivatives. It is worth noting that our result
holds without assuming that the operator L,, isin the canonical form.

Consider the differential equation

1 1 ) / N/ -
(an_m) ((me) ) ) +Aao)x =0 (1.43)

where the coefficients a;, i = 0,1, ...,n — 1, are continuous positive functions on the
interval I = [0, co) and A isareal parameter different from zero. Equation (1.43) can be
interpreted as a first order differentia system for the vector (x9, xt1, ... x[*=11) given

by

01y — Wy — T -1y — __* =21’
0 =20, M) = 0, 0 = <x (r)) .
The functionsx!, i = 0,1, ..., n — 1 arecalled the quasiderivatives of x. By asolution
of (1.43) we mean a continuously differentiable function x such that its quasiderivatives
xl1 exist and are continuous on 7, and for ¢ € I it satisfies (1.43). As usual, a nontrivial
solution of (1.43) is said to be oscillatory or nonoscillatory according to whether it does
or does not have arbitrarily large zeros.
Jointly with (1.43), consider the adjoint equation

1 1 ,’ I\ NN t =0 (144)
(mol Gome) ) ) revmam=o @

The spaces of solutions of (1.43), (1.44) are mutually related. For instance, (1.43) has at
least one oscillatory solution if and only if the same happens for (1.44) (see, e.g., [31,
Th.8.33] or [28, Cor.2]). Other related contributions are in [42] and, when n = 3,in [36].

Following Kiguradze and Kondratiev, (see, e.g., [47]), we use thefollowing definition.

Definition 1.4. Equation (1.43) is said to have property A if, for n even, al its solutions
are oscillatory and, for n odd, every solution x is either oscillatory or satisfies (1.35) for
i=01,....,n—1

Equation (1.43) is said to have property B if, for n even, every solution x is either
oscillatory or satisfies (1.35) or (1.36) for i = 0,1,...,n — 1, and, for n odd, every
solution is either oscillatory or satisfies (1.36) fori = 0,1,...,n — 1.

Remark 1.7. Property A (property B) ensures the existence of all types of solutions
occuring initsdefinition, i.e. the existence of Kneser (and/or strongly monotone) solutions
as well as the existence of oscillatory solutions (see [31, Theorems 8.5 and 8.8]). Note
that solution of (1.43) is said to be a Kneser solution [strongly monotone solution] if it
satisfies (1.33) [(1.34)] fori =0,1,...,n — 2
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The following relationship between the properties A and B holds for the binomial
equations, see [47, Theorem 1.3]:

Theorem C. Let n be odd and p be a continuous positive function on [0, co). Equation
x™ + p(t)x = 0 has property A if and only if its adjoint equation x ™ — p(f)x = 0 has
property B.

Our main result, proved in [D8], extends this theorem and Theorem 1.20 to equations
(1.43) and reads as follows.

Theorem 1.23 (Equivalence Theorem). The following holds:

(@) Let) > 0andn beodd. Equation (1.43) has property A if and only if equation (1.44)
has property B.

(b) Let A > O0andn beeven. Equation (1.43) has property A if and only if equation (1.44)
has property A.

(c) Let A < Oandn beodd. Equation (1.43) has property B if and only if equation (1.44)
has property A.

(d) Letx < Oandn beeven. Equation (1.43) has property Bif and only if equation (1.44)
has property B.

There are many papersin the literature devoted to the property A or B independently.
The Equivalence Theorem enables us to apply criteria on property A to obtain criteriaon
property B and vice versa.

Notes. The extension of property A and property B to the nonlinear differential equations
associated with the disconjugate operators have been given in [10].
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4 Resume

The aim of the dissertation isto present main results published in the papers [D1]-{D12].
These results contribute to the asymptotic theory of the following ordinary differential
equations:

(1) Second order differential equationswith p-Laplacian
Consider the nonlinear equation

(@@®®,(x")" =b) f(x) (4.1)

and the functional differential equation
(@)@, (x") = b(e) f(x(g())),

where the functions a, b are continuous and positive for ¢+ > 0, ®,(u) = lu|P~2u with
p > 1, f iscontinuouson R such that f(u)u > Oforu #0,and g : [0,00) — Risa
continuous function satisfying lim;_, o, g(t) = oc.

These equations arise in the study of radially symmetric solutions of the nonlinear par-
tial differential equation with p-Laplacian. They are natural generalizations of nonlinear
equations with the Sturm-Liouville operator. When f(x) = ®4(x) (¢ > 1) and f(x) =
= ®,(x), (4.1) iscaled aquasilinear equation and a half-linear equation, respectively.
Theintegral conditions describing the asymptotic behavior of all nonoscillatory solutions
of (4.1) are given. Moreover, applicationsto the quasilinear equations and the half-linear
eguations are given as well.

Our results in this direction generalize or complete the results of Cecchi-Marini-
Villari, Elbert, Elbert-Kusano, Mirzov, Mizukami-Naito-Usami, Philos, Potter, Tanigawa,
and others.

(2) Third order linear and nonlinear differential equations

We establish new results in the oscillatory and asymptotic theories of the third order
differential equation

"+ pt)x' +q@) f(x) =0.
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Our results in this direction generalize or complete the results of Dolan, Erbe, Gregus,
Gera, Hanan, Jones, Lazer, Gaet.Villari, and others.

(3) Linear differential equationswith the disconjugate operators
Consider the two-term linear differential equation

L,x+pt)x=0

wheren > 3, p # 0, and L,, isthe n-th order disconjugate operator

d 1 d 1 d

L,x =— eee— —
Y da, 1) () di

with continuous and positivereal functionsa; (i = 1, ..., n) on [0, co). These equations,
sometimes called equationswith quasiderivatives, enjoy avery rich structure of solutions.
A particular attention is devoted to the oscillatory and asymptotic properties of these
equations described in terms of the so-called property A and property B. In particular, the
equival ence theorem between both propertiesis proved.

Our resultsin thisdirection generalize or complete the results of Chanturia, Chanturia-
Kiguradze, Dzurina, Elias, Kiguradze, Kusano, Kusano-Naito, Kusano-Naito-Tanaka,
Ohriska, Svec, Trench, and others.

The dissertation is organized into three chapters:
Chapter 1: Differential equations with p-Laplacian — papers [D9, D10, D11, D12]
Chapter 2: Third order differential equations— papers[D1, D2, D3, D4, D5, D6, D7]
Chapter 3: Linear differential equations of n-th order — paper [D8].

The main contribution of the presented papers consists of the following topics:

(1) Possibletypesof nonoscillatory solutions of the second and third order differential
equations.

(2) Necessary and sufficient conditions ensuring the existence of zero-convergent so-
lutions and the existence of bounded/unbounded solutions.

(3 A description of the asymptotic behavior of all nonoscillatory solutions of (4.1)
and their quasiderivatives.

(4) Limit and integral characterizations of the principal solution of the half-linear
differential equations.

(5 Theorems on the equivalence between the properties A and B for the third and
higher order linear differential equations with quasiderivatives.

(6) Oscillatory propertiesfor the third order linear differential equations.

(7) Sufficiency theorems for property A and property B for the third order nonlinear
differential equations.



