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1 Introduction

1.1 Motivation

Much of this work is motivated by two long-standing open problems which we recall
in this section. The necessary definitions are given in the remaining part of the
present chapter.

The first of these problems is a conjecture of Thomassen [69] on Hamilton cir-
cuits in line graphs, which we simply call ‘the Thomassen Conjecture’ in this text.
While graphs of arbitrarily high connectivity may easily fail to be Hamiltonian, the
conjecture states that for line graphs, being 4-connected is sufficient:

Conjecture 1.1.1 (Thomassen Conjecture). Fvery 4-connected line graph is Hamil-
tonian.

An interesting feature of the Thomassen Conjecture is that it has an unexpected
number of equivalent formulations, some of which are seemingly much stronger. (See
Chapter 2.) We remark that according to [69], Conjecture 1.1.1 was inspired by a
conjecture of Chvatal on the Hamiltonicity of tough graphs, discussed in Section 3.6.

The second problem, which we regard as one of the most beautiful in graph
theory, was first posed by Fulkerson [28] and is also attributed to C. Berge:

Conjecture 1.1.2 (Berge—Fulkerson Conjecture). Every bridgeless cubic graph ad-
mits a list of 6 perfect matchings covering each edge exactly twice.

Conjecture 1.1.2 is trivially true for 3-edge-colourable cubic graphs (to get the
required list of perfect matchings, take each colour class twice). In fact, the con-
jecture would be established if one could prove it for special non-3-edge-colourable
cubic graphs known as snarks (see Section 2.2). In this respect, the situation is
similar with the Thomassen Conjecture: it would also be sufficient to prove it for
line graphs of snarks. These observations highlight the prominent place of snarks in
the present thesis.

Thus, we conclude this section with a kind of emblematic illustration (Figure 1.1),
showing how the above two conjectures hold for the most ubiquitous of snarks, the
Petersen graph. The right hand part of Figure 1.1 is taken from [28, Figure 12] (and
is essentially unique).



Figure 1.1: Left: a Hamilton circuit (bold) in the line graph of the Petersen graph.
Right: a list of six perfect matchings in the Petersen graph satisfying the Berge—
Fulkerson Conjecture. The two labels at each edge e indicate the two perfect match-
ings containing e.

1.2 An outline of this thesis

This thesis comprises the papers listed on page v, which are referred to by Roman
numerals such as [I]. The choice of these papers is disjoint from the set of papers
constituting my habilitation thesis [41].

In Sections 1.3-1.8, we recall basic notions and results used in the subsequent
chapters, providing the necessary background.

Chapters 2-5 each start with a brief general account of the topic. Each section
of these chapters is devoted to a problem studied in one or two papers contained
in this thesis, which are referred to in the margin of the section. We try to pro-
vide a clear and accurate statement of each result, introduce relevant definitions,
embed the results in the broader context, and highlight conceptual links to other
sections. Results from papers contained in the thesis are marked with an asterisk
(e.g., Theorem* 2.2.2).

Chapter 2 deals with problems related to Conjecture 1.1.1, discussing Hamilton
circuits in line graphs or dominating circuits in cubic graphs. Chapter 3 collects
further results on the existence of Hamiltonian structures in graphs, such as k-walks
or trestles.

Chapter 4 shifts the focus from circuits to matchings as it examines several re-
sults related to the Berge—Fulkerson Conjecture (Conjecture 1.1.2). Finally, Chap-
ter 5 discusses graph decompositions involving matchings, such as edge colourings
or decompositions into acyclic subgraphs and matchings.

1.3 Graphs

We use standard terminology of graph theory as defined, e.g., in the monographs [10]
or [17], to which we also refer readers interested in additional background.
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Unless stated otherwise, our graphs are undirected, they may contain parallel
edges but they do not contain loops. The vertex set and the edge set of a graph
G are denoted by V(G) and E(G), respectively. Graphs without parallel edges are
called simple. A graph is k-regular if all vertices have degree k. We refer to 3-regular
graphs as cubic.

There are several competing conventions regarding the term cycle, circuit and
Eulerian graph. In this commentary, we try to be consistent in using the term
circuit for a connected 2-regular graph, cycle for an edge-disjoint union of circuits,
and Fulerian graph for a connected cycle. The girth of a graph G is the length of a
shortest circuit in G.

A walk in a graph G is a sequence vy, €g, v1, €1, . . ., U, Where each v; (0 <i < k)
is a vertex and each e; (0 <i < k —1) is an edge with endvertices v; and v; ;. The
walk is closed if vy = vy. It is spanning if it contains all the vertices of G. A trail is
a walk where each edge of G appears at most once.

A subgraph F of G is a factor (or a spanning subgraph) if V(F) = V(G). A
factor which is a circuit is called a Hamilton circuit; any graph admitting such a
factor is Hamiltonian.

A subgraph H of G is induced if each edge of G with both endvertices in V(H)
is present in H.

A wvertex cut in a graph G is a set S of vertices such that G — S is disconnected.
The graph is k-connected if it contains no vertex cuts of size at most £ — 1 and
has more than k vertices. The connectivity of G is the largest k such that G is
k-connected.

Similarly, an edge cut in G is a set C' of edges such that G — C' is disconnected,
and G is k-edge-connected if it contains no edge cuts of size at most k — 1. A graph
is said to be bridgeless if it contains no edge cut of size 1. Thus, any connected
bridgeless graph is 2-edge-connected.

1.4 Line graphs

Let G be a graph. The line graph L(G) of G is the graph with vertex set F(G) where
two vertices e, es are joined by an edge if eq, e5 are incident edges of G. Graphs of
the form L(G) for some G are just called line graphs.

Not every graph is a line graph, the simplest example being the claw K 3. Since
the class of line graphs is closed under taking induced subgraphs, no graph containing
K3 as an induced subgraph is a line graph. Beineke [8] was able to characterise
the class of line graphs in terms of nine forbidden induced subgraphs, one of which
is K 3.

The claw and K3 are distinct graphs with the same line graph. However, this is
the only such pair (see, e.g. [32]): for any line graph H other than Kj, there is a
unique graph G such that H = L(G), called the preimage of H.

Various properties of the line graph L(G) can be expressed in terms of properties
of the graph G. For instance, the vertex-connectivity of L(G) translates to the so-
called essential edge-connectivity of G which we define next.



An edge cut in a graph G is trivial if it consists of all edges incident with a single
vertex. The graph G is essentially k-edge-connected if each edge cut in G of size less
than k is trivial'. The essential edge-connectivity of G is the largest k such that G
is essentially k-edge-connected. We have:

Observation 1.4.1. For a graph G and an integer k, L(G) is k-connected if and
only if G is essentially k-edge-connected and |E(G)| > k.

Likewise, the Hamiltonicity of L(G) has a counterpart in G. Let us call a sub-
graph H of G dominating if each edge of G is incident with a vertex of H. The
following characterisation is proved in [33]:

Theorem 1.4.2. Let G be a graph. The line graph L(G) of G is Hamiltonian if and
only if G admits a dominating (connected) FEulerian subgraph H and |E(G)| > 3.

A dominating Eulerian subgraph is also traditionally called a dominating closed
trail.

1.5 Claw-free graphs

A graph is claw-free if it contains no K 3 as an induced subgraph. By the discus-
sion in Section 1.4, all line graphs are claw-free. Hence the following conjecture of
Matthews and Sumner [53] is formally stronger than Conjecture 1.1.1:

Conjecture 1.5.1. Every 4-connected claw-free graph is Hamiltonian.

The conjectures are in fact equivalent, as shown by Ryjacek in [62]. The key
tool in the proof is the (claw-free) closure which transforms a claw-free graph to a
line graph containing it, while preserving its Hamiltonicity properties. The closure
cl(G) of a claw-free graph G is obtained by the following procedure: as long as the
graph contains a vertex v such that the induced subgraph on its neighbourhood
N(v) is connected (an eligible vertex), add edges between all neighbours of v. The
procedure stops when there is no vertex v with this property.

It is shown in [62] that ¢l(G) is independent of the order in which the eligible
vertices are chosen, and therefore is well-defined. Furthermore, the following holds:

Theorem 1.5.2. Let G be a claw-free graph. Then cl(G) is a line graph of a
triangle-free graph. Furthermore, the length of a longest circuit is the same in G

and in cl(G).

The equivalence of Conjectures 1.1.1 and 1.5.1 is obvious from this theorem.

'We note that the definition in [10] requires that, in addition, G is (k — 1)-edge-connected.
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1.6 Chordal graphs

A graph is chordal if it contains no induced circuit of length greater than 3. Chordal
graphs are interesting from the algorithmic viewpoint, since for a number of problems
considered computationally hard, there are efficient algorithms in the class of chordal
graphs [30, Section 4.7].

Two interesting subclasses of the class of chordal graphs are those of split graphs
and interval graphs. A graph G is split if it contains a complete subgraph K such
that G — V(K) is an independent set.

To define the class of interval graphs, let J be a finite family of (closed bounded)
intervals on the real line. The intersection graph G(J) of J has vertex set J and
two vertices I, J are joined by an edge if they intersect. A graph G is said to be
an interval graph if there exists a family of intervals J such that G is isomorphic to
G(J). In such a case, J is referred to as an interval representation of G.

1.7 Colouring

A (proper) colouring of a graph G with k colours is an assignment of colours from
{1,...,k} to the vertices of G such that adjacent vertices are assigned distinct
colours. The chromatic number x(G) of G is the least k allowing for a colouring of
G with k colours. It is easy to characterise graphs with chromatic number 1 or 2,
but already determining whether the chromatic number of a graph is at most 3 is a
well-known NP-hard problem.

A most basic upper bound to the chromatic number is given by the following
theorem of Brooks:

Theorem 1.7.1 (Brooks Theorem). If a connected graph G has mazimum degree
A, then x(G) < A unless G is a complete graph or an odd circuit.

An edge colouring of a graph G is defined as a colouring of the line graph L(G).
In other words, it is an assignment of colours to the edges of G such that incident
edges are assigned distinct colours. The chromatic index x'(G) of G is defined as
the chromatic number of L(G).

Note that for any edge colouring of G with k colours, the set of edges assigned
any specific colour in {1, ..., k} is a matching. Thus, edge colourings can be viewed
as edge-decompositions into matchings.

A fundamental result about edge colouring is the Vizing Theorem, relating x'(G)
to the maximum degree of G:

Theorem 1.7.2 (Vizing Theorem). If G is a simple graph with maximum degree
A, then
A<Y(G)<A+1.

Simple graphs G with \/(G) = A are referred to as Class I graphs, while the
other graphs are Class II. In the cubic case, Class II graphs are closely related to
snarks (see Section 2.2).



1.8 Tree packing

Tutte [71] and Nash-Williams [57] characterised graphs containing k edge-disjoint
connected factors — or, equivalently, k£ edge-disjoint spanning trees:

Theorem 1.8.1 (Tree Packing Theorem). Let k > 1. A graph G contains k disjoint
spanning trees if and only if for every partition P of V(G), there are at least k(]P|—1)
edges with endvertices in distinct classes of P.

By a simple counting argument, Theorem 1.8.1 implies the following:

Corollary 1.8.2. A 2k-edge-connected graph contains k edge-disjoint spanning
trees, for any k > 1.

This result has many applications in structural graph theory and the theory of
nowhere-zero flows. For instance, Jaeger [36] used it to obtain the first positive
result related to the 5-flow conjecture of Tutte [70].



2 Hamilton circuits in line graphs

2.1 Introduction

This chapter discusses our contributions related to the Hamiltonicity of line graphs.
In Section 2.2, we present an equivalent form of the Thomassen Conjecture (Con-
jecture 1.1.1) in terms of dominating circuits in snarks.

The focus of Section 2.3 is a result which confirms the Thomassen Conjecture
for 5-connected line graphs with minimum degree at least 6. This is the closest
approximation to Conjecture 1.1.1 available to date, and the method devised for
this purpose (which we call the method of iterated partitions) is one of the most
substantial contributions in this thesis.

The following section briefly discusses a spinoff from the above project, namely
an alternative short proof of Theorem 1.8.1 obtained by an application of the same
general approach.

Finally, in Section 2.5, we discuss another application of the method of iterated
partitions, namely to the 1-Hamilton-connectivity of line graphs.

2.2 Snarks and the Dominating Circuit Conjecture

Conjecture 1.1.1 has a surprising number of equivalent formulations. As men-
tioned in Section 1.5, it is equivalent to the conjecture, due to Matthews and Sum-
ner [53], that all 4-connected claw-free graphs are Hamiltonian.

On the other hand, by Observation 1.4.1 and Theorem 1.4.2, Conjecture 1.1.1
is equivalent to the statement that all essentially 4-edge-connected graphs admit
dominating Eulerian subgraphs.

Let us now restrict the latter statement to cubic graphs. An Eulerian subgraph
of a cubic graph G is just a circuit. To rephrase the condition that G is essentially
4-edge-connected in a way better suited for a cubic graph, recall that G is said to
be cyclically k-edge-connected if there is no edge cut C' in G such that |C| < k and
more than one component of G — C' contains a circuit. Since it is not hard to see
that G is cyclically 4-edge-connected if and only if it is essentially 4-edge connected,
the sought restriction is:

Conjecture 2.2.1. FEvery cyclically 4-edge-connected cubic graph contains a domi-
nating circuit.



As shown by Fleischner and Jackson [26], this restriction is actually still equiv-
alent to Conjecture 1.1.1. In fact, Kochol [46] proved that it is equivalent to the
statement that every cyclically 4-edge-connected, non-3-edge-colourable cubic graph
contains a dominating circuit.

Continuing this development, we showed that the above conjectures are equiv-
alent to a further restriction to snarks. While there are competing definitions of
snarks, a widely accepted one says that a snark is a cyclically 4-edge-connected,
non-3 edge-colourable cubic graph without circuits of length less than 5. (The rea-
son for this condition is that circuits of length 2 to 4 make it easy to reduce the
snark to a smaller one.) In [I], we proved:

Theorem* 2.2.2. Conjecture 2.2.1 (and thus also Conjecture 1.1.1) is equivalent
to the statement that every snark admits a dominating circuit.

2.3 Hamilton circuits in b-connected line graphs

The first general result in the direction of Conjecture 1.1.1 was proved by
Zhan [72] in 1991:

Theorem 2.3.1. Every 7-connected line graph is Hamziltonian.

Zhan’s proof is based on the use of Theorem 1.8.1 and a counting argument, which
together imply that essentially 7-edge-connected graphs admit dominating Eulerian
subgraphs. The theorem then follows by Observation 1.4.1 and Theorem 1.4.2.

This method fails for 6-connected line graphs, where examples show that Theo-
rem 1.8.1 is in general not applicable. In the paper [II], we presented a new method
of dealing with the problem and we succeeded in relaxing the connectivity assump-
tion even a bit further:

Theorem™ 2.3.2. Fvery 5-connected line graph with minimum degree at least 6 is
Hamiltonian.

Broadly speaking, the proof method is still based on finding a structure that
resembles disjoint spanning trees. However, the concept has to be modified in sub-
stantial ways, such as replacing graphs with hypergraphs of rank 3, or relaxing the
notion of connectedness. The key technical ingredient of the paper is the ‘Skeletal
Lemma’ [IT, Lemma 17] whose applicability is more general.

2.4 Tree packing revisited

In view of the use of the Tree Packing Theorem to prove Theorem 2.3.1, and
the fact that the proof of the stronger Theorem 2.3.2 is self-contained, it is not
surprising that the method introduced in [II] provides a new proof of the Tree
Packing Theorem.



In such a proof, the setting is in various ways simpler than that of [II]. As a
result, the argument (published in [ITI]) is much shorter and easier to follow, and
can in fact be recommended as a preparatory reading for anyone wishing to study
the paper [IT].

As pointed out by D. Kral’ (personal communication), the approach of [III] can
be used, on a more general level, to get an alternative proof of the Base Packing
Theorem [19] for matroids.

2.5 1-Hamilton-connectedness

Although Theorem 2.3.2 is stated for line graphs, it extends to claw-free graphs:
that is, all 5-connected claw-free graphs of minimum degree at least 6 are Hamilto-
nian. This follows by a simple application of the closure theorem (Theorem 1.5.2).

In another direction, Theorem 2.3.2 can be extended to Hamilton-connected-
ness. Recall that a graph is said to be Hamilton-connected if for every pair of
distinct vertices u, v, there is a Hamilton path starting at « and ending at v. The
general statement proved in [IT] is as follows:

Theorem™ 2.5.1. All 5-connected claw-free graphs with minimum degree at least 6
are Hamilton-connected.

As expected, this result is first proved for line graphs, and then extended to
claw-free graphs by means of a closure result. However, the claw-free closure and
Theorem 1.5.2 cannot be used for this purpose. Instead, we applied the so-called

multigraph closure — introduced in [63] — which behaves well with respect to
Hamilton-connectedness in the same way as the claw-free closure works for Hamil-
tonicity.

A natural strengthening of Hamilton-connectedness is the notion of k-Hamil-
ton-connectedness. A graph is said to be k-Hamilton-connected if the removal of
any k vertices produces a Hamilton-connected graph. Using a modification of the
argument of [II] in combination with a suitable closure concept, we managed to
strengthen Theorem 2.5.1 to 1-Hamilton-connected graphs [IV]:

Theorem* 2.5.2. Fvery 5-connected claw-free graph with minimum degree at least
6 s 1-Hamilton-connected.

In this case, the closure used was the 1HC-closure [64] which preserves the (non)-
1-Hamilton-connectedness of claw-free graphs.
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3 Hamiltonian structures in graphs

3.1 Introduction

This chapter is intended to demonstrate some of the techniques used when dealing
with Hamiltonian structures in graphs of various types. In the first three sections,
the structures are not Hamilton circuits as such, but are obtained by relaxing their
definition in one way or another. For instance, if we view a Hamilton circuit in
a graph G as an Eulerian factor of maximum degree 2, we can be interested in
the existence of Eulerian factors of maximum degree 2s (s > 1). This is the case
of Section 3.2, where this problem is studied from the point of view of forbidden
induced subgraphs.

In the setting of Section 3.3, Hamilton circuits are viewed as 2-connected factors
with maximum degree 2. Allowing higher maximum degree, say k, we obtain the
definition of k-trestle. The result of this section is a trestle variation on Dirac’s
classical degree condition for Hamiltonicity [18].

Yet another Hamiltonian-type structure appears in Section 3.4: a Hamilton cir-
cuit can also be regarded as a closed walk visiting each vertex once. If we allow it
to visit a vertex up to k times, the result is the notion of k-walk. Naturally, one is
interested in the existence of k-walks where k is as small as possible; we present a
result bounding k in terms of the maximum degree for bridgeless graphs.

Returning to Hamilton circuits as such, Section 3.5 focuses on the Hamiltonicity
of network topologies, in particular certain Cayley graphs known as star graphs.
While these graphs are known to be Hamiltonian, fault tolerance in network design
makes it desirable to have multiple edge-disjoint Hamilton circuits. Our result is a
lower bound on the number of such circuits in the class of star graphs.

Research reported in the last section of this chapter is motivated by another
long-standing open problem, the conjecture of Chvatal about the Hamiltonicity of
tough graphs. We investigate Hamiltonian properties of interval graphs and relate
them to the so-called scattering number.

3.2 Star subdivisions and the square of a graph

The results in this section are motivated by a well-known result of Fleischner [27]
from 1971 concerning Hamilton circuits in the square of a graph. Recall that the
square G? of G is the graph with the same vertex set and edges joining vertices at
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distance 1 or 2 in GG. Fleischner showed the following:
Theorem 3.2.1. The square of every 2-connected graph is Hamiltonian.

The assumption of 2-connectedness in Theorem 3.2.1 cannot be relaxed, as shown
by the claw with each edge subdivided once (denoted by S(K;3)). On the other
hand, Gould and Jacobson [31] conjectured that if a connected graph G contains no
induced copy of S(Kj3), then G is Hamiltonian. This conjecture was proved by
Hendry and Vogler [34] and the result was further extended in [1].

As noted in Section 3.1, a Hamilton circuit may be regarded as an Eulerian factor
with maximum degree 2. Allowing maximum degree 2s (s > 1) instead, we obtain
the notion of [2,2s]-factor. Thus, Hamilton circuits coincide with [2, 2]-factors.

We found in [V] that Hendry and Vogler’s result generalises in a natural way to a
sufficient condition for the existence of a [2, 2s]-factor in G?. The condition involves
S(K12s+1), the subdivision of the (2s + 1)-star, as a forbidden induced subgraph:

Theorem™ 3.2.2. Let G be a connected graph containing no induced copy of the
graph S(Kis11), where s > 1. Then G* contains a [2,2s]-factor.

3.3 A Dirac theorem for trestles

A number of sufficient conditions for Hamiltonicity involve vertex degrees — well-
known examples include conditions due to Dirac, Ore or Chvatal. Dirac’s result [18]
reads as follows:

Theorem 3.3.1 (Dirac Theorem). If G is a simple graph with n > 3 vertices and
minimum degree at least n/2, then G is Hamiltonian.

Searching for degree conditions for more general types of Hamiltonian structures,
we focused on the notion of k-trestle. For k > 2, a k-trestle in a graph G is a 2-
connected factor of G with maximum degree at most k. Clearly, a 2-trestle is just a
Hamilton circuit. The concept originated in [6] and has mainly been studied in the
context of planar graphs or graphs on other surfaces.

In [VI], we succeeded in proving the following generalisation of the Dirac Theo-
rem to trestles:

Theorem* 3.3.2 ([VI]). Every 2-connected simple graph with n vertices and mini-
mum degree at least 2n/(k + 2), where k > 2, contains a k-trestle.

Note that the k = 2 case implies the Dirac Theorem, since a simple graph with
n vertices and minimum degree at least n/2 is easily seen to be 2-connected.
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3.4 k-walks in graphs

A natural way of looking at a Hamilton circuit in a graph G is as a closed walk
visiting each vertex of G exactly once. If we allow multiple visits, we obtain the
definition of a k-walk in G — a closed walk visiting each vertex at least once and
at most k£ times.

There is a close connection between k-walks and k-trees, defined (in this context)
as spanning trees of maximum degree at most k. Indeed, a depth-first traversal of
a k-tree produces a k-walk. In the converse direction, if we follow a k-walk starting
at an arbitrary vertex, and mark the current edge whenever it leads to a vertex
that has not yet been visited, then the resulting set of marked edges constitutes a
(k + 1)-tree.

There is an interesting problem relating k-walks to toughness. Jackson and
Wormald [35] proved that for & > 3, every 1/(k — 2)-tough graph admits a k-walk,
and made the following conjecture:

Conjecture 3.4.1. For k > 2, every 1/(k — 1)-tough graph admits a k-walk.

Even the k = 2 case of this conjecture is an appealing open problem.

In [VII], we relate the existence of k-walks in graphs to the maximum degree.
Suppose that a graph G has maximum degree A. If G is connected, then any
spanning tree is a A-tree, and therefore G admits a A-walk. The star on A + 1
vertices shows that we cannot expect a k-walk with £ < A in this case. On the other
hand, we prove in [VII] that an improvement is possible if G is 2-edge-connected:

Theorem™ 3.4.2. Any 2-edge-connected graph with mazimum degree A admits a
[(A+1)/2]-walk.

A construction in the paper shows that this result is optimal.

3.5 Hamilton circuits in network topologies

Network topologies are graphs with properties suitable for interconnection net-
works, with vertices representing processors and edges representing data links be-
tween them. The relevant properties include, e.g., maximum degree, connectivity,
diameter, Hamiltonicity or Hamilton connectedness depending on the situation.

A classical example of a network topology is the n-hypercube whose vertices are
binary strings of length n and whose edges connect strings that differ in a single
coordinate. Explicit Hamilton circuits in the n-hypercube, and more generally in
other combinatorially defined networks, are traditionally known as Gray codes (see
the comprehensive survey [65]).

Not only is the n-hypercube Hamiltonian; it is even Hamilton-decomposable [5].
(We recall that a regular graph of degree d is said to be Hamilton-decomposable if
it admits |d/2] edge-disjoint Hamilton circuits.) This is a favourable property for

13



a network, since up to |d/2| — 1 links can be allowed to be faulty and a Hamilton
circuit is still guaranteed to exist.

In the paper [VIII], we study related problems for another class of network
topologies, namely the star graphs. These graphs were introduced by Akers et
al. [3] and are regarded as alternatives to hypercube networks with slightly better
parameters in some respects. Before we define star graphs, we recall the definition
of a Cayley graph.

Let I" be a group and X C I' a subset containing the inverse 2! of each = € X.
The Cayley graph on T generated by X, denoted by Cay(T', X), has vertex set I' and
edges joining ¢ to gx for each g € I' and z € X.

The star graph ¥(n) is obtained by taking I' to be the symmetric group S,
on n elements (say 0,...,n — 1) and taking X to be the set of transpositions
{(0,1),...,(0,n—1)}. It is known to be Hamiltonian; in fact, the same is true
for every Cayley graph Cay(S,, X) where X is a set of transpositions generating
S, [47]. Tt is an open problem whether such graphs are Hamilton-decomposable,
and the answer is not known even for ¥(n).

In [VIII], we obtain a partial result toward this question:

Theorem* 3.5.1. The graph ¥(n) contains a family of Q(n/loglogn) edge-disjoint
Hamilton circuits. For prime n, the bound improves to |n/8].

Since X(n) is (n — 1)-regular, proving it Hamilton-decomposable would require
finding |(n — 1)/2]| edge-disjoint Hamilton circuits. Our lower bound has been
improved in [16] roughly by a factor of two (to |[n/5] in the prime case).

3.6 Hamilton circuits in interval graphs

Chvatal [14] defined the toughness 7(G) of a graph G as follows:

19
7(G) = min (G- 8)
where S ranges over all vertex cuts of G and ¢(G — 5) is the number of components
of G — S; in the case of a complete graph, we set 7(K,,) = co. The graph G is said
to be t-tough if 7(G) > t.
Every Hamiltonian graph is easily seen to be 1-tough. Chvéatal [14] conjectured
a partial converse:

Conjecture 3.6.1. There exists tg such that every to-tough graph is Hamiltonian.

If the constant ¢y in Conjecture 3.6.1 exists, it is known [7] that ¢, > 9/4.

Much of the research of Conjecture 3.6.1 has been directed at the class of chordal
graphs, where the conjecture is known to hold [13] with ¢y = 18 and where the bound
was recently improved to 10 by Kabela and Kaiser [40]. Subclasses for which the
optimal value of #; is known include the class of split graphs [49] or interval graphs.
For the latter, Keil [43] provided an algorithm that finds a Hamilton circuit in
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an interval graph whenever it exists. According to [13], this algorithm implicitly
contains the result that an interval graph is Hamiltonian if and only if it is 1-tough.
In [IX], we continued the study of Hamilton circuits in interval graphs in con-
nection with a parameter related to toughness, the scattering number sc(G) of G,
defined in [39]:
sc(G) = mgxc(G - S)—195].

Since sc(G) < 0 if and only if 7(G) > 1, Keil’s result implies that interval graphs
G with sc(G) < 0 are Hamiltonian. As for positive values of sc(G), it is known [15]
that for an interval graph G and k > 1, sc¢(G) < k is equivalent to the existence of k
vertex-disjoint paths covering V(G). In [IX], we found the following interpretation
of the negative values of sc(G) which complements the above results in a natural
way. Recall that a graph is said to be t-Hamilton-connected if the removal of any
set of vertices of cardinality at most ¢ yields a Hamilton-connected graph.

Theorem* 3.6.2. For k < —1 and an interval graph G, sc(G) < k if and only if G
is —(k + 1)-Hamilton-connected.

Furthermore, we give an O(n + m) time algorithm for finding the scattering
number of an interval graph with n vertices and m edges, improving a previously
known O(n?) time algorithm [48]. (For background on computational complexity,
we refer the reader to the monographs [29] or [67].)

Lastly, our paper [IX] includes an explicit proof that Keil’s algorithm finds a
Hamilton circuit in any 1-tough interval graph (more precisely, an explicit construc-
tion of a set showing that the toughness is below 1 if the algorithm fails).
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4 Around the Berge—Fulkerson Conjecture

4.1 Introduction

This chapter brings matchings into play as it centers around the Berge-Fulkerson
Conjecture:

Conjecture (Berge-Fulkerson; stated earlier as Conjecture 1.1.2). Any bridgeless
cubic graph admits a set of 6 perfect matchings covering each edge exactly twice.

On the other hand, this does not take us too far away from circuits in graphs.
Recall that a cycle in a graph is defined as an edge-disjoint union of circuits. By
considering the complements of the six perfect matchings in Conjecture 1.1.2, we
obtain an equivalent statement in terms of cycles:

Conjecture 4.1.1. Every bridgeless cubic graph admits a set of 6 cycles covering
each edge exactly 4 times.

This formulation is reminiscent of the another fundamental problem, due to
Szekeres [68] and Seymour [66]:

Conjecture 4.1.2 (Cycle Double Cover Conjecture). Every bridgeless graph admits
a set of cycles covering each edge exactly twice.

In fact, the stronger Five Cycle Double Cover Conjecture [11, 61] parallels Con-
jecture 4.1.1 even more closely; for emphasis, we state the conjecture in its equivalent
form for cubic graphs:

Conjecture 4.1.3 (Five Cycle Double Cover Conjecture). Every bridgeless cubic
graph admits a set of 5 cycles covering each edge exactly twice.

Given the simplicity of the formulation of the Berge-Fulkerson Conjecture, it is
surprising how little is known about it. In the absence of techniques needed to attack
the conjecture itself, much attention has been given to special cases, connections to
other open questions and modifications of the problem.

The Berge-Fulkerson Conjecture, if true, implies that the edge set of any bridge-
less cubic graph can be covered by five perfect matchings. This suggests the question
about the proportion of the edges that can be covered by k perfect matchings. In
Section 4.2, we recall related results and problems.
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Another consequence of this conjecture is that every bridgeless cubic graph con-
tains three perfect matchings with empty intersection, as conjectured by Fan and
Raspaud [24]. A weakening of this statement, motivated by the concept of Fano
colouring of cubic graphs, is discussed in Section 4.3.

Section 4.4 focuses on short cycle covers of graphs, a topic closely related to the
Berge—Fulkerson Conjecture and other problems involving cubic graphs. We review
these connections as well as known bounds on the length of a shortest cycle cover.

4.2 Unions of perfect matchings

Assuming the truth of the Berge—Fulkerson Conjecture, consider a Berge—
Fulkerson covering of a bridgeless cubic graph G — that is, a set of six perfect
matchings satisfying the condition stated by the conjecture. Any five out of these
perfect matchings still cover E(G). What is the maximum number of edges coverable
by k < 5 perfect matchings, relative to the size of G?

It is convenient to restate the question using the following notation. For a bridge-
less cubic graph G and an integer k, define my(G) as the maximum ratio

|M1 u---u Mk|
EG)|

where My, ..., M range over perfect matchings of G. Furthermore, let my be the
infimum of my(G) over all bridgeless cubic graphs G. By the above, the Berge—
Fulkerson Conjecture implies that ms = 1. The latter statement, conjectured by
Berge, was in fact shown to be equivalent to the conjecture [54].

As for the values of my, with k& < 5, it is trivial that m; = 1/3. By considering
the Petersen graph, we find that

ma < 3/5,m3 < 4/5 and my < 14/15. (4.1)
In [X], we determined the exact value of ms and provided a lower bound for myg:
Theorem* 4.2.1. It holds that my = 3/5 and mg > 27/35.

The main tool in the proof is the Perfect Matching Polytope Theorem of Ed-
monds [20].

By an easy counting argument (cf. [59]), the Berge—Fulkerson Conjecture would
imply that all the inequalities in (4.1) are in fact equalities. It is worth noting
that Esperet and Mazzuoccolo [23] recently showed that m4 = 14/15 would imply
ms = 4/5, and the latter would imply the Fan—Raspaud Conjecture discussed in
Section 4.3.
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4.3 Sparsely intersecting perfect matchings

Let € be a Berge-Fulkerson covering of a bridgeless cubic graph G. Since every
edge is only contained in two perfect matchings of C, the intersection of any three
perfect matchings of € is empty. Fan and Raspaud [24] stated this consequence as
a separate conjecture:

Conjecture 4.3.1 (Fan—Raspaud Conjecture). In any bridgeless cubic graph, there
are three perfect matchings with empty intersection.

A natural relaxation of Conjecture 4.3.1 replaces perfect matchings with joins,
defined — in cubic graphs — as factors with all vertex degrees odd (thus, any perfect
matching is a join):

Theorem 4.3.2. In any bridgeless cubic graph, there are three joins with empty
intersection.

Theorem 4.3.2 is easily seen to be equivalent to Jaeger’s 8-Flow Theorem [36].
(To point out a connection to an earlier chapter, we mention that the main tool
used to prove the theorem is Theorem 1.8.1, discussed in Section 2.4.)

MAécajova and Skoviera [51] observed a connection between Theorem 4.3.2 and
the so-called Fano colourings which they introduced. A Fano colouring of a cubic
graph G is an assignment of points of the Fano plane to the edges of G such that
any three edges incident with a common vertex are assigned three distinct collinear
points. The existence of Fano colourings in all cubic bridgeless graphs is equivalent
to Theorem 4.3.2.

Define a k-line Fano colouring of G to be one in which the collinear point triples
appearing at the vertices of GG correspond to only k& of the lines of the Fano plane.
Thus, every bridgeless cubic graph admits a 7-line Fano colouring. At the other
extreme, the existence of a 1-line Fano colouring is (clearly) equivalent to G being
3-edge-colourable. As shown in [51], every bridgeless cubic graph actually admits
a 6-line Fano colouring. Furthermore, the existence of a 4-line Fano colouring in
a cubic bridgeless graph is shown there to be equivalent to the existence of three
perfect matchings with empty intersection as in Conjecture 4.3.1.

In [XI], we studied the existence of 5-line Fano colourings in a class of cubic
graphs that are, in a sense, close to being 3-edge-colourable. We recall that the
oddness of a bridgeless cubic graph G is defined as the minimum number of odd
circuits in a 2-factor of G. The main result of [XI] is:

Theorem* 4.3.3. Fvery bridgeless cubic graph of oddness 2 admits a 5-line Fano
colouring.

Our result was subsequently improved by Macajovd and Skoviera [50] who es-
tablished the validity of the Fan-Raspaud Conjecture (and thus, the existence of
4-line Fano colourings) for bridgeless cubic graphs of oddness 2.
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4.4 Short circuit covers

A circuit cover of a graph G is a set of circuits covering each edge at least once.
(Note that a graph is bridgeless if and only if it admits a circuit cover.) The length
of a circuit cover is the sum of the lengths of all the circuits it contains. The length
of a shortest circuit cover, relative to the total number of edges, is the subject of
several results and conjectures.

Let s(G) denote the length of a shortest circuit cover of a graph G, and let m(G)
denote the number of edges of G. An upper bound on s(G) in terms of m(G) is
provided by the following result [4, 9]:

Theorem 4.4.1. For any bridgeless graph G,

s(G@) < 5m_(G)

S5 ™ 1.667Tm(G).

For cubic bridgeless graphs, the bound was improved by Fan [25] to s(G) <
44m(G) /27 =~ 1.630m(G). In [XII], we provide a further improvement:

Theorem* 4.4.2. For any cubic bridgeless graph,

< 34m(G)

s(G) = =5

~ 1.619m(G).

Very recently, a proof of the bound s(G) < 1.6m(G) was announced by
R. Lukotka.

Short circuit covers are closely related to the Cycle Double Cover Conjecture
(Conjecture 4.1.2): as shown by Jamshy and Tarsi [38], the latter conjecture would
follow if one could show that s(G) < 1.4m(G) for every cubic bridgeless graph G.
The constant 1.4 is attained for the Petersen graph.

A proof of the Berge-Fulkerson Conjecture would have significant consequences
for the shortest circuit cover problem: as proved in [24], it would imply that s(G) <
22m(G)/15 ~ 1.467m(G) for every bridgeless cubic graph. Note that the constant
is only 1/15 away from the value that would suffice to prove the Cycle Double Cover
Conjecture.

20



5 Matchings and decompositions

5.1 Introduction

This chapter deals with graph decomposition problems involving matchings. In-
cluded among them is edge colouring, which is just a decomposition into matchings.

By the Vizing Theorem (Theorem 1.7.2), the chromatic index of simple cubic
graphs is 3 or 4. Cubic graphs which do not admit any 3-edge-colouring play an
important role in previous chapters (particularly snarks, whose definition includes
additional nontriviality contraints). Thus, edge colouring underlies much of the
material presented in this thesis.

Section 5.2 is related to a conjecture of Jaeger and Swart that the girth of snarks
is bounded. Although this conjecture is known to be false, we show that its natural
counterpart involving circular edge colouring holds. An extension of the result for
higher maximum degree is presented in the same section.

A more restrictive variant of edge colouring, the strong edge colouring, is studied
in Section 5.3. It has proved difficult to upper bound the strong chromatic index in
terms of the maximum degree (in the spirit of the Vizing Theorem). We consider
a generalisation of strong edge colouring, the so-called distance-t colouring, and
extend Molloy and Reed’s upper bound for the strong chromatic index to this more
general case.

Many decomposition problems deal with decompositions into other ‘simple’ sub-
graphs than matchings. A particularly natural choice are acyclic subgraphs; the
parameter corresponding to the chromatic index is called arboricity and is quite
well-understood. In Section 5.4, we examine a less well-understood combination
of the two problems, where the sought decomposition is into a number of acyclic
subgraphs and a matching.

5.2 Snarks and the circular chromatic index

The problem of determining whether a given cubic graph is 3-edge-colourable is
a well-known NP-complete problem. Thus, there seems to be little hope of finding a
good characterisation of snarks. On the other hand, there are a number of known or
conjectural necessary conditions. For instance, it is known that every snark contains
a subdivision of the Petersen graph (the proof of this conjecture of Tutte was finished
in [22]). A bold conjecture was made by Jaeger and Swart [37] in 1979:
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Conjecture 5.2.1. There exists an integer k such that every snark contains a circuit
of length at most k.

Recall that the girth of a graph G is defined as the minimum length of a circuit
in G. Thus, the conjecture asserts that the girth of snarks is bounded. Kochol [45]
used his superposition method to construct snarks of arbitrarily large girth, thus
disproving Conjecture 5.2.1. (We remark, however, that it is still an intriguing open
problem whether the cyclic connectivity of snarks is bounded.)

In the paper [XIII], we studied a relaxation of Conjecture 5.2.1 involving the
so-called circular chromatic index. For positive integers p,q, a circular p/q-edge
colouring of a graph G is an assignment of colours in {0,...,p — 1} to the edges of
G, such that for incident edges, the difference modulo p of their colours does not
fall in the interval {—(¢ —1),—(¢ —2),...,q—1}. The circular chromatic index
X.(G) of G is defined as the minimum p/q such that there exists a circular p/g-edge
colouring of G. (The minimum is known to be attained for every graph G.) The
circular chromatic index of G is a lower bound to x/(G) since it can be shown that
V() = UG

We showed in [XIII] that Conjecture 5.2.1 is, in a sense, true for circular edge
colouring:

Theorem™ 5.2.2. For each € > 0, there is g such that for every cubic bridgeless
graph G with girth at least g, x.(G) < 3 + €.

In the follow-up paper [XIV], we extended the result to graphs of higher maxi-
mum degree:

Theorem* 5.2.3. For each € > 0 and A > 1, there is g such that for every graph
G with mazimum degree A and girth at least g, X.(G) < A +¢.

5.3 The strong chromatic index

A k-edge colouring of a graph G is said to be strong if the edges of each colour
form an induced matching in GG. That is, if edges e and f have the same colour,
then there is no edge in G incident with both e and f. The least k for which a graph
G admits a strong k-edge colouring is called the strong chromatic index of G and
denoted by x5(G).

Erdés and Nesettil proposed in 1985 the problem of determining the maximum
possible strong chromatic index of a graph with maximum degree A. They observed
that for even A, the graph obtained by blowing up each vertex of a 5-cycle to an
independent set of size A/2 (in such a way that edges of the 5-cycle correspond to
complete bipartite subgraphs) has maximum degree A and strong chromatic index
5A? /4. They conjectured that this lower bound is optimal.

A trivial upper bound to x,(G) for graphs G of maximum degree A, namely

Xo(G) < 2A(A —-1), (5.1)
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follows from the Brooks Theorem. Although the coefficient 2 at the A? term in (5.1)
is far from the conjectured value of 5/4, it has proved hard to improve it even by a
tiny margin. The best general bound is due to Molloy and Reed [55]:

Theorem 5.3.1. For any graph G with sufficiently large maximum degree A,
X5(G) < 1.992A2.

The theorem is proved by a probabilistic argument.

Together with R. Kang, we studied in [XV] a variant of strong colouring with
a more restrictive condition for edges of the same colour. Given t > 1, a distance-t
colouring of a graph G is an edge colouring where no two edges of the same colour
are at distance less than ¢. (The distance of two edges is measured as the number of
vertices in a shortest path joining an endvertex of one to an endvertex of the other.)
Thus, distance-1 colouring is just proper edge colouring, and distance-2 colouring is
strong edge colouring.

For any ¢, there is the trivial upper bound y; < 2A’. As shown by examples
constructed in [42], the term A’ cannot be improved to an asymptotically lesser one.
As we found in [XV], the coefficient 2 can be decreased by a universal constant,
valid not only for all graphs but (somewhat surprisingly) also for all ¢:

Theorem* 5.3.2. Let t > 2. For any graph G with sufficiently large maximum
degree A, x}(G) < 1.99992 - A’

For graphs of large girth, the upper bound can be improved. In the case of the
strong chromatic index, Mahdian [52] showed that if a graph G contains no circuits
of length 4, then x5(G) = O(A?/log A). For general distance-t colouring, we obtain
the following result [X'V]:

Theorem™ 5.3.3. Let t > 2. For any graph of girth at least 2t + 1 and maximum
degree A, x;(G) = O(A'/log A).

5.4 Decomposing graphs into forests and a matching

Edge colouring is the most usual kind of an edge-decomposition problem where
graphs are decomposed into ‘simply structured’ subgraphs (in this case matchings).
Another very natural problem of this type deals with decompositions into acyclic
subgraphs and leads to a parameter known as arboricity.

Let G be a graph. The arboricity of G, denoted by YT (G), is the least k such that
there exists an edge-decomposition of G into k acyclic subgraphs (forests). An exact
min-max relation, expressing the arboricity in terms of the density of subgraphs, is
given by a theorem of Nash-Williams [58]:

Theorem 5.4.1. For any graph G,

[E(H)|
T(G) = max [m-‘ : (5.2)

where the maximum is taken over all subgraphs H of G.
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A very short proof of Theorem 5.4.1 was given in [12]. The arboricity of a graph
can be found in polynomial time, using algorithms for matroid partitioning (see, e.g.,
[21]). This is a substantial difference from the chromatic index which is NP-hard to
determine.

A kind of combination of the two problems was considered by Montassier et
al. [56]. Removing the rounding from the right-hand side of (5.2), we obtain the
definition of fractional arboricity, first introduced by Payan [60] and denoted by Y.

Suppose that T(G) = k + 1 and T;(G) is close to k. All we know from Theo-
rem 5.4.1 is that G can be decomposed into k 4 1 forests. On the other hand, it
is natural to ask (as in [56]) whether the information on Y ;(G) allows us to place
an additional restriction on some of the forests — for instance, we could require
that one of them has bounded maximum degree or bounded component size. The
following conjecture (called the Nine Dragon Tree Conjecture') was stated in [56]:

Conjecture 5.4.2. Let k and d be positive integers. If G is a graph such that

d
T/(G) <k+-———
A L A
then E(G) can be decomposed into k + 1 forests, one of which has mazximum degree
at most d.

Two cases of Conjecture 5.4.2 proved in [56] were k = 1,d = 1 (decomposition
into a forest and a matching) and & = 1,d = 2 (decomposition into a forest and a
linear forest).

In [XVI], we sought to extend the first result to decompositions into a number
of forests and a matching. We proved the following fractional arboricity bound
implying the existence of such a decomposition:

Theorem™ 5.4.3. If G is a graph such that

T <
f(G)—k+3k+2’

then G admits an edge-decomposition into k+ 1 forests, one of which is a matching.

The proof is an interesting application of a topological extension of the Matroid
Intersection Theorem, due to Aharoni and Berger [2].

Kim et al. [44] established Conjecture 5.4.2 for £ = 1 and d < 6, and proved
several strong partial results, one of which improves the bound in Theorem 5.4.3 to
k+1/(2k+2). (Compare this to the conjectured value of k+ 1/(k+2).) It remains
an interesting problem to see if one can match this bound, or even the bound in
Conjecture 5.4.2; using the topological tool employed in [XVT].

IThis exotic name was chosen in reference to a giant banyan tree in Kaohsiung, Taiwan.
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Résumeé

This thesis is based on a collection of 16 papers about the properties of circuits
and matchings in graphs. It includes a commentary divided into five chapters that
provides a background for the reported results.

Chapter 1 describes some of the motivating questions and recalls basic definitions
and results used in the commentary.

The following two chapters (Chapters 2— 3) belong to Hamiltonian graph theory:
the questions under study primarily concern the existence of Hamilton circuits and
related structures in various types of graphs. This includes results on the Hamil-
tonian properties of line graphs (in relation to a conjecture of Thomassen that 4-
connected line graphs are Hamiltonian), as well as those involving k-walks, trestles
or Hamilton circuits depending on degree conditions or forbidden subgraph assump-
tions. Also included is a theorem on disjoint Hamilton circuits in a particular class
of network topologies known as star graphs. Concluding the first part, we present
a result relating the Hamiltonian properties of interval graphs to their scattering
number, and providing algorithmic procedures to decide these properties.

In the last two chapters (Chapters 4-5), the structure of matchings comes to the
fore in a discussion of two contributions related to the Berge—Fulkerson conjecture.
One of them determines the best possible fraction of edges of a cubic bridgeless
graph coverable by two perfect matchings; the other one confirms the existence of
restricted Fano colourings in cubic graphs of oddness two. The topic is intimately
connected to short cycle covers, the subject of the following result which improves
known upper bounds for the length of the shortest cycle cover of a bridgeless graph
with minimum degree at least 3.

The part devoted to matchings continues with decompositions and edge colour-
ings. While it is known that the girth of non-3-edge-colourable graphs is unbounded
(contrary to a conjecture of Jaeger and Swart), we show that an analogue of the
conjecture for circular edge-colouring holds true, and we extend it to a Vizing-type
theorem for circular edge-colouring, valid for graphs of arbitrary maximum degree.
Another result extends a bound for the strong chromatic index (in terms of the max-
imum degree) to distance-t colourings. Finally, we present a contribution regarding
a more general type of a decomposition problem, namely on decompositions into a
number of acyclic subgraphs and one matching, related to the notion of fractional
arboricity.
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